NerdNos-Firmware/lib/rm67162/rm67162.cpp
2023-09-03 15:09:34 +03:00

333 lines
9.1 KiB
C++

#include "rm67162.h"
#include "SPI.h"
#include "Arduino.h"
#include "driver/spi_master.h"
const static lcd_cmd_t rm67162_spi_init[] = {
{0xFE, {0x00}, 0x01}, // PAGE
{0x35, {0x00}, 0x00}, //TE ON
// {0x34, {0x00}, 0x00}, //TE OFF
{0x36, {0x00}, 0x01}, // Scan Direction Control
{0x3A, {0x75}, 0x01}, // Interface Pixel Format 16bit/pixel
// {0x3A, {0x76}, 0x01}, //Interface Pixel Format 18bit/pixel
// {0x3A, {0x77}, 0x01}, //Interface Pixel Format 24bit/pixel
{0x51, {0x00}, 0x01}, // Write Display Brightness MAX_VAL=0XFF
{0x11, {0x00}, 0x01 | 0x80}, // Sleep Out
{0x29, {0x00}, 0x01 | 0x80}, // Display on
{0x51, {0xD0}, 0x01}, // Write Display Brightness MAX_VAL=0XFF
};
const static lcd_cmd_t rm67162_qspi_init[] = {
{0x11, {0x00}, 0x80}, // Sleep Out
// {0x44, {0x01, 0x66}, 0x02}, //Set_Tear_Scanline
// {0x35, {0x00}, 0x00}, //TE ON
// {0x34, {0x00}, 0x00}, //TE OFF
// {0x36, {0x00}, 0x01}, //Scan Direction Control
{0x3A, {0x55}, 0x01}, // Interface Pixel Format 16bit/pixel
// {0x3A, {0x66}, 0x01}, //Interface Pixel Format 18bit/pixel
// {0x3A, {0x77}, 0x01}, //Interface Pixel Format 24bit/pixel
{0x51, {0x00}, 0x01}, // Write Display Brightness MAX_VAL=0XFF
{0x29, {0x00}, 0x80}, // Display on
{0x51, {0xD0}, 0x01}, // Write Display Brightness MAX_VAL=0XFF
};
static spi_device_handle_t spi;
static void WriteComm(uint8_t data)
{
TFT_CS_L;
SPI.beginTransaction(SPISettings(SPI_FREQUENCY, MSBFIRST, TFT_SPI_MODE));
TFT_DC_L;
SPI.write(data);
TFT_DC_H;
SPI.endTransaction();
TFT_CS_H;
}
static void WriteData(uint8_t data)
{
TFT_CS_L;
SPI.beginTransaction(SPISettings(SPI_FREQUENCY, MSBFIRST, TFT_SPI_MODE));
TFT_DC_H;
SPI.write(data);
SPI.endTransaction();
TFT_CS_H;
}
static void WriteData16(uint16_t data)
{
TFT_CS_L;
SPI.beginTransaction(SPISettings(SPI_FREQUENCY, MSBFIRST, TFT_SPI_MODE));
TFT_DC_H;
SPI.write16(data);
SPI.endTransaction();
TFT_CS_H;
}
static void lcd_send_cmd(uint32_t cmd, uint8_t *dat, uint32_t len)
{
#if LCD_USB_QSPI_DREVER == 1
TFT_CS_L;
spi_transaction_t t;
memset(&t, 0, sizeof(t));
t.flags = (SPI_TRANS_MULTILINE_CMD | SPI_TRANS_MULTILINE_ADDR);
t.cmd = 0x02;
t.addr = cmd << 8;
// Serial.printf("t.addr:0x%X\r\n", t.addr);
if (len != 0) {
t.tx_buffer = dat;
t.length = 8 * len;
} else {
t.tx_buffer = NULL;
t.length = 0;
}
spi_device_polling_transmit(spi, &t);
TFT_CS_H;
#else
WriteComm(cmd);
if (len != 0) {
for (int i = 0; i < len; i++)
WriteData(dat[i]);
}
#endif
}
void rm67162_init(void)
{
pinMode(TFT_CS, OUTPUT);
pinMode(TFT_RES, OUTPUT);
TFT_RES_L;
delay(300);
TFT_RES_H;
delay(200);
#if LCD_USB_QSPI_DREVER == 1
esp_err_t ret;
spi_bus_config_t buscfg = {
.data0_io_num = TFT_QSPI_D0,
.data1_io_num = TFT_QSPI_D1,
.sclk_io_num = TFT_QSPI_SCK,
.data2_io_num = TFT_QSPI_D2,
.data3_io_num = TFT_QSPI_D3,
.max_transfer_sz = (SEND_BUF_SIZE * 16) + 8,
.flags = SPICOMMON_BUSFLAG_MASTER | SPICOMMON_BUSFLAG_GPIO_PINS /* |
SPICOMMON_BUSFLAG_QUAD */
,
};
spi_device_interface_config_t devcfg = {
.command_bits = 8,
.address_bits = 24,
.mode = TFT_SPI_MODE,
.clock_speed_hz = SPI_FREQUENCY,
.spics_io_num = -1,
// .spics_io_num = TFT_QSPI_CS,
.flags = SPI_DEVICE_HALFDUPLEX,
.queue_size = 17,
};
ret = spi_bus_initialize(TFT_SPI_HOST, &buscfg, SPI_DMA_CH_AUTO);
ESP_ERROR_CHECK(ret);
ret = spi_bus_add_device(TFT_SPI_HOST, &devcfg, &spi);
ESP_ERROR_CHECK(ret);
#else
SPI.begin(TFT_SCK, -1, TFT_MOSI, TFT_CS);
SPI.setFrequency(SPI_FREQUENCY);
pinMode(TFT_DC, OUTPUT);
#endif
// Initialize the screen multiple times to prevent initialization failure
int i = 3;
while (i--) {
#if LCD_USB_QSPI_DREVER == 1
const lcd_cmd_t *lcd_init = rm67162_qspi_init;
for (int i = 0; i < sizeof(rm67162_qspi_init) / sizeof(lcd_cmd_t); i++)
#else
const lcd_cmd_t *lcd_init = rm67162_spi_init;
for (int i = 0; i < sizeof(rm67162_spi_init) / sizeof(lcd_cmd_t); i++)
#endif
{
lcd_send_cmd(lcd_init[i].cmd,
(uint8_t *)lcd_init[i].data,
lcd_init[i].len & 0x7f);
if (lcd_init[i].len & 0x80)
delay(120);
}
}
}
void lcd_setRotation(uint8_t r)
{
uint8_t gbr = TFT_MAD_RGB;
switch (r) {
case 0: // Portrait
// WriteData(gbr);
break;
case 1: // Landscape (Portrait + 90)
gbr = TFT_MAD_MX | TFT_MAD_MV | gbr;
break;
case 2: // Inverter portrait
gbr = TFT_MAD_MX | TFT_MAD_MY | gbr;
break;
case 3: // Inverted landscape
gbr = TFT_MAD_MV | TFT_MAD_MY | gbr;
break;
}
lcd_send_cmd(TFT_MADCTL, &gbr, 1);
}
void lcd_address_set(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2)
{
lcd_cmd_t t[3] = {
{0x2a, {uint8_t(x1 >> 8), (uint8_t)x1, (uint8_t)(x2 >> 8), (uint8_t) x2}, 0x04},
{0x2b, {uint8_t(y1 >> 8), (uint8_t)y1, (uint8_t)(y2 >> 8), (uint8_t) y2}, 0x04},
{0x2c, {0x00}, 0x00},
};
for (uint32_t i = 0; i < 3; i++) {
lcd_send_cmd(t[i].cmd, t[i].data, t[i].len);
}
}
void lcd_fill(uint16_t xsta,
uint16_t ysta,
uint16_t xend,
uint16_t yend,
uint16_t color)
{
uint16_t w = xend - xsta;
uint16_t h = yend - ysta;
uint16_t *color_p = (uint16_t *)ps_malloc(w * h * 2);
if (!color_p) {
return;
}
memset(color_p, color, w * h * 2);
lcd_PushColors(xsta, ysta, w, h, color_p);
free(color_p);
}
void lcd_DrawPoint(uint16_t x, uint16_t y, uint16_t color)
{
lcd_address_set(x, y, x + 1, y + 1);
lcd_PushColors(&color, 1);
}
void lcd_PushColors(uint16_t x,
uint16_t y,
uint16_t width,
uint16_t high,
uint16_t *data)
{
#if LCD_USB_QSPI_DREVER == 1
bool first_send = 1;
size_t len = width * high;
uint16_t *p = (uint16_t *)data;
lcd_address_set(x, y, x + width - 1, y + high - 1);
TFT_CS_L;
do {
size_t chunk_size = len;
spi_transaction_ext_t t = {0};
memset(&t, 0, sizeof(t));
if (first_send) {
t.base.flags =
SPI_TRANS_MODE_QIO /* | SPI_TRANS_MODE_DIOQIO_ADDR */;
t.base.cmd = 0x32 /* 0x12 */;
t.base.addr = 0x002C00;
first_send = 0;
} else {
t.base.flags = SPI_TRANS_MODE_QIO | SPI_TRANS_VARIABLE_CMD |
SPI_TRANS_VARIABLE_ADDR | SPI_TRANS_VARIABLE_DUMMY;
t.command_bits = 0;
t.address_bits = 0;
t.dummy_bits = 0;
}
if (chunk_size > SEND_BUF_SIZE) {
chunk_size = SEND_BUF_SIZE;
}
t.base.tx_buffer = p;
t.base.length = chunk_size * 16;
// spi_device_queue_trans(spi, (spi_transaction_t *)&t, portMAX_DELAY);
spi_device_polling_transmit(spi, (spi_transaction_t *)&t);
len -= chunk_size;
p += chunk_size;
} while (len > 0);
TFT_CS_H;
#else
lcd_address_set(x, y, x + width - 1, y + high - 1);
TFT_CS_L;
SPI.beginTransaction(SPISettings(SPI_FREQUENCY, MSBFIRST, TFT_SPI_MODE));
TFT_DC_H;
SPI.writeBytes((uint8_t *)data, width * high * 2);
SPI.endTransaction();
TFT_CS_H;
#endif
}
void lcd_PushColors(uint16_t *data, uint32_t len)
{
#if LCD_USB_QSPI_DREVER == 1
bool first_send = 1;
uint16_t *p = (uint16_t *)data;
TFT_CS_L;
do {
size_t chunk_size = len;
spi_transaction_ext_t t = {0};
memset(&t, 0, sizeof(t));
if (first_send) {
t.base.flags =
SPI_TRANS_MODE_QIO /* | SPI_TRANS_MODE_DIOQIO_ADDR */;
t.base.cmd = 0x32 /* 0x12 */;
t.base.addr = 0x002C00;
first_send = 0;
} else {
t.base.flags = SPI_TRANS_MODE_QIO | SPI_TRANS_VARIABLE_CMD |
SPI_TRANS_VARIABLE_ADDR | SPI_TRANS_VARIABLE_DUMMY;
t.command_bits = 0;
t.address_bits = 0;
t.dummy_bits = 0;
}
if (chunk_size > SEND_BUF_SIZE) {
chunk_size = SEND_BUF_SIZE;
}
t.base.tx_buffer = p;
t.base.length = chunk_size * 16;
// spi_device_queue_trans(spi, (spi_transaction_t *)&t, portMAX_DELAY);
spi_device_polling_transmit(spi, (spi_transaction_t *)&t);
len -= chunk_size;
p += chunk_size;
} while (len > 0);
TFT_CS_H;
#else
TFT_CS_L;
SPI.beginTransaction(SPISettings(SPI_FREQUENCY, MSBFIRST, TFT_SPI_MODE));
TFT_DC_H;
SPI.writeBytes((uint8_t *)data, len * 2);
SPI.endTransaction();
TFT_CS_H;
#endif
}
void lcd_sleep()
{
lcd_send_cmd(0x10, NULL, 0);
}
void lcd_on()
{
lcd_send_cmd(0x29, NULL, 0x00);
}
void lcd_off()
{
lcd_send_cmd(0x28, NULL, 0x00);
}