Release 1.6.0

- Solved bugs found on merkle root calculations.
- Solved issues about difficulty calculation
- Tested on low difficulty pools.
- Changed the default pool to http://public-pool.airdns.org/
- Added new notes to readme about supported pools
- Added new custom sha tests to use on next versions
This commit is contained in:
BitMaker 2023-07-30 11:01:06 +02:00
parent d61440de25
commit ffe1a79040
11 changed files with 1126 additions and 333 deletions

View File

@ -71,7 +71,15 @@ After programming, you will only need to setup your Wifi and BTC address.
1. Setup your Wifi Network
1. Add your BTCaddress
Optional you can select other pool:
Recommended low difficulty share pools:
| Pool URL | Port | URL | Status |
|--- |--- |--- |--- |
| public-pool.airdns.org | 21496 | https://public-pool.airdns.org:37273/ | Check your stats. Supporting open source miners discord group |
| nerdminers.org | | | Currently pointing to th Open Source Solo Bitcoin Mining Pool |
| nerdminer.io | 3333 | https://nerdminer.io | Mantained by CHMEX |
Other standard pools not compatible with low difficulty share:
| Pool URL | Port | URL |
|--- |--- |--- |

View File

@ -16,7 +16,7 @@
#include "mining.h"
#include "monitor.h"
#define CURRENT_VERSION "V1.5.2"
#define CURRENT_VERSION "V1.6.0"
//3 seconds WDT
#define WDT_TIMEOUT 3

View File

@ -1,222 +0,0 @@
#include "customSHA256.h"
#define TOTAL_LEN_LEN 8
/*
* Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
* When useful for clarification, portions of the pseudo-code are reproduced here too.
*/
/*
* @brief Rotate a 32-bit value by a number of bits to the right.
* @param value The value to be rotated.
* @param count The number of bits to rotate by.
* @return The rotated value.
*/
static inline uint32_t right_rot(uint32_t value, unsigned int count)
{
/*
* Defined behaviour in standard C for all count where 0 < count < 32, which is what we need here.
*/
return value >> count | value << (32 - count);
}
/*
* @brief Update a hash value under calculation with a new chunk of data.
* @param h Pointer to the first hash item, of a total of eight.
* @param p Pointer to the chunk data, which has a standard length.
*
* @note This is the SHA-256 work horse.
*/
static inline void consume_chunk(uint32_t *h, const uint8_t *p)
{
unsigned i, j;
uint32_t ah[8];
/* Initialize working variables to current hash value: */
for (i = 0; i < 8; i++)
ah[i] = h[i];
/*
* The w-array is really w[64], but since we only need 16 of them at a time, we save stack by
* calculating 16 at a time.
*
* This optimization was not there initially and the rest of the comments about w[64] are kept in their
* initial state.
*/
/*
* create a 64-entry message schedule array w[0..63] of 32-bit words (The initial values in w[0..63]
* don't matter, so many implementations zero them here) copy chunk into first 16 words w[0..15] of the
* message schedule array
*/
uint32_t w[16];
/* Compression function main loop: */
for (i = 0; i < 4; i++) {
for (j = 0; j < 16; j++) {
if (i == 0) {
w[j] =
(uint32_t)p[0] << 24 | (uint32_t)p[1] << 16 | (uint32_t)p[2] << 8 | (uint32_t)p[3];
p += 4;
} else {
/* Extend the first 16 words into the remaining 48 words w[16..63] of the
* message schedule array: */
const uint32_t s0 = right_rot(w[(j + 1) & 0xf], 7) ^ right_rot(w[(j + 1) & 0xf], 18) ^
(w[(j + 1) & 0xf] >> 3);
const uint32_t s1 = right_rot(w[(j + 14) & 0xf], 17) ^
right_rot(w[(j + 14) & 0xf], 19) ^ (w[(j + 14) & 0xf] >> 10);
w[j] = w[j] + s0 + w[(j + 9) & 0xf] + s1;
}
const uint32_t s1 = right_rot(ah[4], 6) ^ right_rot(ah[4], 11) ^ right_rot(ah[4], 25);
const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
/*
* Initialize array of round constants:
* (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
*/
static const uint32_t k[] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4,
0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe,
0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f,
0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc,
0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b,
0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116,
0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7,
0xc67178f2};
const uint32_t temp1 = ah[7] + s1 + ch + k[i << 4 | j] + w[j];
const uint32_t s0 = right_rot(ah[0], 2) ^ right_rot(ah[0], 13) ^ right_rot(ah[0], 22);
const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
const uint32_t temp2 = s0 + maj;
ah[7] = ah[6];
ah[6] = ah[5];
ah[5] = ah[4];
ah[4] = ah[3] + temp1;
ah[3] = ah[2];
ah[2] = ah[1];
ah[1] = ah[0];
ah[0] = temp1 + temp2;
}
}
/* Add the compressed chunk to the current hash value: */
for (i = 0; i < 8; i++)
h[i] += ah[i];
}
/*
* Public functions. See header file for documentation.
*/
void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH])
{
sha_256->hash = hash;
sha_256->chunk_pos = sha_256->chunk;
sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
sha_256->total_len = 0;
/*
* Initialize hash values (first 32 bits of the fractional parts of the square roots of the first 8 primes
* 2..19):
*/
sha_256->h[0] = 0x6a09e667;
sha_256->h[1] = 0xbb67ae85;
sha_256->h[2] = 0x3c6ef372;
sha_256->h[3] = 0xa54ff53a;
sha_256->h[4] = 0x510e527f;
sha_256->h[5] = 0x9b05688c;
sha_256->h[6] = 0x1f83d9ab;
sha_256->h[7] = 0x5be0cd19;
}
void sha_256_write(struct Sha_256 *sha_256, const uint8_t *data, size_t len)
{
sha_256->total_len += len;
const uint8_t *p = data;
while (len > 0) {
/*
* If the input chunks have sizes that are multiples of the calculation chunk size, no copies are
* necessary. We operate directly on the input data instead.
*/
if (sha_256->space_left == SIZE_OF_SHA_256_CHUNK && len >= SIZE_OF_SHA_256_CHUNK) {
consume_chunk(sha_256->h, p);
len -= SIZE_OF_SHA_256_CHUNK;
p += SIZE_OF_SHA_256_CHUNK;
continue;
}
/* General case, no particular optimization. */
const size_t consumed_len = len < sha_256->space_left ? len : sha_256->space_left;
memcpy(sha_256->chunk_pos, p, consumed_len);
sha_256->space_left -= consumed_len;
len -= consumed_len;
p += consumed_len;
if (sha_256->space_left == 0) {
consume_chunk(sha_256->h, sha_256->chunk);
sha_256->chunk_pos = sha_256->chunk;
sha_256->space_left = SIZE_OF_SHA_256_CHUNK;
} else {
sha_256->chunk_pos += consumed_len;
}
}
}
uint8_t *sha_256_close(struct Sha_256 *sha_256)
{
uint8_t *pos = sha_256->chunk_pos;
size_t space_left = sha_256->space_left;
uint32_t *const h = sha_256->h;
/*
* The current chunk cannot be full. Otherwise, it would already have been consumed. I.e. there is space left for
* at least one byte. The next step in the calculation is to add a single one-bit to the data.
*/
*pos++ = 0x80;
--space_left;
/*
* Now, the last step is to add the total data length at the end of the last chunk, and zero padding before
* that. But we do not necessarily have enough space left. If not, we pad the current chunk with zeroes, and add
* an extra chunk at the end.
*/
if (space_left < TOTAL_LEN_LEN) {
memset(pos, 0x00, space_left);
consume_chunk(h, sha_256->chunk);
pos = sha_256->chunk;
space_left = SIZE_OF_SHA_256_CHUNK;
}
const size_t left = space_left - TOTAL_LEN_LEN;
memset(pos, 0x00, left);
pos += left;
size_t len = sha_256->total_len;
pos[7] = (uint8_t)(len << 3);
len >>= 5;
int i;
for (i = 6; i >= 0; --i) {
pos[i] = (uint8_t)len;
len >>= 8;
}
consume_chunk(h, sha_256->chunk);
/* Produce the final hash value (big-endian): */
int j;
uint8_t *const hash = sha_256->hash;
for (i = 0, j = 0; i < 8; i++) {
hash[j++] = (uint8_t)(h[i] >> 24);
hash[j++] = (uint8_t)(h[i] >> 16);
hash[j++] = (uint8_t)(h[i] >> 8);
hash[j++] = (uint8_t)h[i];
}
return sha_256->hash;
}
void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const uint8_t *input, size_t len)
{
struct Sha_256 sha_256;
sha_256_init(&sha_256, hash);
sha_256_write(&sha_256, input, len);
(void)sha_256_close(&sha_256);
}

View File

@ -1,103 +0,0 @@
#ifndef SHA_256_H
#define SHA_256_H
#include <stdint.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
/*
* @brief Size of the SHA-256 sum. This times eight is 256 bits.
*/
#define SIZE_OF_SHA_256_HASH 32
/*
* @brief Size of the chunks used for the calculations.
*
* @note This should mostly be ignored by the user, although when using the streaming API, it has an impact for
* performance. Add chunks whose size is a multiple of this, and you will avoid a lot of superfluous copying in RAM!
*/
#define SIZE_OF_SHA_256_CHUNK 64
/*
* @brief The opaque SHA-256 type, that should be instantiated when using the streaming API.
*
* @note Although the details are exposed here, in order to make instantiation easy, you should refrain from directly
* accessing the fields, as they may change in the future.
*/
struct Sha_256 {
uint8_t *hash;
uint8_t chunk[SIZE_OF_SHA_256_CHUNK];
uint8_t *chunk_pos;
size_t space_left;
size_t total_len;
uint32_t h[8];
};
/*
* @brief The simple SHA-256 calculation function.
* @param hash Hash array, where the result is delivered.
* @param input Pointer to the data the hash shall be calculated on.
* @param len Length of the input data, in byte.
*
* @note If all of the data you are calculating the hash value on is available in a contiguous buffer in memory, this is
* the function you should use.
*
* @note If either of the passed pointers is NULL, the results are unpredictable.
*/
void calc_sha_256(uint8_t hash[SIZE_OF_SHA_256_HASH], const uint8_t *input, size_t len);
/*
* @brief Initialize a SHA-256 streaming calculation.
* @param sha_256 A pointer to a SHA-256 structure.
* @param hash Hash array, where the result will be delivered.
*
* @note If all of the data you are calculating the hash value on is not available in a contiguous buffer in memory, this is
* where you should start. Instantiate a SHA-256 structure, for instance by simply declaring it locally, make your hash
* buffer available, and invoke this function. Once a SHA-256 hash has been calculated (see further below) a SHA-256
* structure can be initialized again for the next calculation.
*
* @note If either of the passed pointers is NULL, the results are unpredictable.
*/
void sha_256_init(struct Sha_256 *sha_256, uint8_t hash[SIZE_OF_SHA_256_HASH]);
/*
* @brief Stream more input data for an on-going SHA-256 calculation.
* @param sha_256 A pointer to a previously initialized SHA-256 structure.
* @param data Pointer to the data to be added to the calculation.
* @param len Length of the data to add, in byte.
*
* @note This function may be invoked an arbitrary number of times between initialization and closing, but the maximum
* data length is limited by the SHA-256 algorithm: the total number of bits (i.e. the total number of bytes times
* eight) must be representable by a 64-bit unsigned integer. While that is not a practical limitation, the results are
* unpredictable if that limit is exceeded.
*
* @note This function may be invoked on empty data (zero length), although that obviously will not add any data.
*
* @note If either of the passed pointers is NULL, the results are unpredictable.
*/
void sha_256_write(struct Sha_256 *sha_256, const uint8_t *data, size_t len);
/*
* @brief Conclude a SHA-256 streaming calculation, making the hash value available.
* @param sha_256 A pointer to a previously initialized SHA-256 structure.
* @return Pointer to the hash array, where the result is delivered.
*
* @note After this function has been invoked, the result is available in the hash buffer that initially was provided. A
* pointer to the hash value is returned for convenience, but you should feel free to ignore it: it is simply a pointer
* to the first byte of your initially provided hash array.
*
* @note If the passed pointer is NULL, the results are unpredictable.
*
* @note Invoking this function for a calculation with no data (the writing function has never been invoked, or it only
* has been invoked with empty data) is legal. It will calculate the SHA-256 value of the empty string.
*/
uint8_t *sha_256_close(struct Sha_256 *sha_256);
#ifdef __cplusplus
}
#endif
#endif

467
src/ShaTests/nerdSHA256.cpp Normal file
View File

@ -0,0 +1,467 @@
#define NDEBUG
#include <stdio.h>
#include <string.h>
#include <Arduino.h>
//#include <wolfssl/wolfcrypt/sha256.h>
#include <esp_log.h>
#include <esp_timer.h>
#include "nerdSHA256.h"
#include <math.h>
#include <string.h>
#define HASH_SIZE 32
IRAM_ATTR static inline uint32_t rotlFixed(uint32_t x, uint32_t y)
{
return (x << y) | (x >> (sizeof(y) * 8 - y));
}
IRAM_ATTR static inline uint32_t rotrFixed(uint32_t x, uint32_t y)
{
return (x >> y) | (x << (sizeof(y) * 8 - y));
}
/* SHA256 math based on specification */
#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x,y,z) ((((x) | (y)) & (z)) | ((x) & (y)))
#define R(x, n) (((x) & 0xFFFFFFFFU) >> (n))
#define S(x, n) rotrFixed(x, n)
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
#define a(i) S[(0-(i)) & 7]
#define b(i) S[(1-(i)) & 7]
#define c(i) S[(2-(i)) & 7]
#define d(i) S[(3-(i)) & 7]
#define e(i) S[(4-(i)) & 7]
#define f(i) S[(5-(i)) & 7]
#define g(i) S[(6-(i)) & 7]
#define h(i) S[(7-(i)) & 7]
#define XTRANSFORM(S, D) Transform_Sha256((S),(D))
#define XMEMCPY(d,s,l) memcpy((d),(s),(l))
#define XMEMSET(b,c,l) memset((b),(c),(l))
/* SHA256 version that keeps all data in registers */
#define SCHED1(j) (W[j] = *((uint32_t*)&data[j*sizeof(uint32_t)]))
#define SCHED(j) ( \
W[ j & 15] += \
Gamma1(W[(j-2) & 15])+ \
W[(j-7) & 15] + \
Gamma0(W[(j-15) & 15]) \
)
#define RND1(j) \
t0 = h(j) + Sigma1(e(j)) + Ch(e(j), f(j), g(j)) + K[i+j] + SCHED1(j); \
t1 = Sigma0(a(j)) + Maj(a(j), b(j), c(j)); \
d(j) += t0; \
h(j) = t0 + t1
#define RNDN(j) \
t0 = h(j) + Sigma1(e(j)) + Ch(e(j), f(j), g(j)) + K[i+j] + SCHED(j); \
t1 = Sigma0(a(j)) + Maj(a(j), b(j), c(j)); \
d(j) += t0; \
h(j) = t0 + t1
//DRAM_ATTR static const uint32_t K[] = {
DRAM_ATTR static const uint32_t K[64] = {
0x428A2F98L, 0x71374491L, 0xB5C0FBCFL, 0xE9B5DBA5L, 0x3956C25BL,
0x59F111F1L, 0x923F82A4L, 0xAB1C5ED5L, 0xD807AA98L, 0x12835B01L,
0x243185BEL, 0x550C7DC3L, 0x72BE5D74L, 0x80DEB1FEL, 0x9BDC06A7L,
0xC19BF174L, 0xE49B69C1L, 0xEFBE4786L, 0x0FC19DC6L, 0x240CA1CCL,
0x2DE92C6FL, 0x4A7484AAL, 0x5CB0A9DCL, 0x76F988DAL, 0x983E5152L,
0xA831C66DL, 0xB00327C8L, 0xBF597FC7L, 0xC6E00BF3L, 0xD5A79147L,
0x06CA6351L, 0x14292967L, 0x27B70A85L, 0x2E1B2138L, 0x4D2C6DFCL,
0x53380D13L, 0x650A7354L, 0x766A0ABBL, 0x81C2C92EL, 0x92722C85L,
0xA2BFE8A1L, 0xA81A664BL, 0xC24B8B70L, 0xC76C51A3L, 0xD192E819L,
0xD6990624L, 0xF40E3585L, 0x106AA070L, 0x19A4C116L, 0x1E376C08L,
0x2748774CL, 0x34B0BCB5L, 0x391C0CB3L, 0x4ED8AA4AL, 0x5B9CCA4FL,
0x682E6FF3L, 0x748F82EEL, 0x78A5636FL, 0x84C87814L, 0x8CC70208L,
0x90BEFFFAL, 0xA4506CEBL, 0xBEF9A3F7L, 0xC67178F2L
};
IRAM_ATTR static int Transform_Sha256(nerd_sha256* sha256, const uint8_t* data)
{
uint32_t S[8], t0, t1;
int i;
uint32_t W[NERD_BLOCK_SIZE/sizeof(uint32_t)];
/* Copy digest to working vars */
S[0] = sha256->digest[0];
S[1] = sha256->digest[1];
S[2] = sha256->digest[2];
S[3] = sha256->digest[3];
S[4] = sha256->digest[4];
S[5] = sha256->digest[5];
S[6] = sha256->digest[6];
S[7] = sha256->digest[7];
i = 0;
RND1( 0); RND1( 1); RND1( 2); RND1( 3);
RND1( 4); RND1( 5); RND1( 6); RND1( 7);
RND1( 8); RND1( 9); RND1(10); RND1(11);
RND1(12); RND1(13); RND1(14); RND1(15);
/* 64 operations, partially loop unrolled */
for (i = 16; i < 64; i += 16) {
RNDN( 0); RNDN( 1); RNDN( 2); RNDN( 3);
RNDN( 4); RNDN( 5); RNDN( 6); RNDN( 7);
RNDN( 8); RNDN( 9); RNDN(10); RNDN(11);
RNDN(12); RNDN(13); RNDN(14); RNDN(15);
}
/* Add the working vars back into digest */
sha256->digest[0] += S[0];
sha256->digest[1] += S[1];
sha256->digest[2] += S[2];
sha256->digest[3] += S[3];
sha256->digest[4] += S[4];
sha256->digest[5] += S[5];
sha256->digest[6] += S[6];
sha256->digest[7] += S[7];
return 0;
}
IRAM_ATTR static uint32_t ByteReverseWord32(uint32_t value){
value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
return rotlFixed(value, 16U);
}
IRAM_ATTR static void ByteReverseWords(uint32_t* out, const uint32_t* in, uint32_t byteCount)
{
uint32_t count, i;
count = byteCount/(uint32_t)sizeof(uint32_t);
for (i = 0; i < count; i++) out[i] = ByteReverseWord32(in[i]);
}
IRAM_ATTR static int nerd_update(nerd_sha256* sha256, uint8_t* data, uint32_t len)
{
int ret = 0;
uint32_t blocksLen;
uint8_t* local;
//ShaUpdate
uint32_t tmp = sha256->loLen;
if ((sha256->loLen += len) < tmp) {
sha256->hiLen++; /* carry low to high */
}
local = (uint8_t*)sha256->buffer;
/* process any remainder from previous operation */
if (sha256->buffLen > 0) {
blocksLen = min(len, NERD_BLOCK_SIZE - sha256->buffLen);
XMEMCPY(&local[sha256->buffLen], data, blocksLen);
sha256->buffLen += blocksLen;
data += blocksLen;
len -= blocksLen;
if (sha256->buffLen == NERD_BLOCK_SIZE) {
ByteReverseWords(sha256->buffer, sha256->buffer, NERD_BLOCK_SIZE);
ret = XTRANSFORM(sha256, (const uint8_t*)local);
if (ret == 0)
sha256->buffLen = 0;
else
len = 0; /* error */
}
}
/* process blocks */
while (len >= NERD_BLOCK_SIZE) {
uint32_t* local32 = sha256->buffer;
XMEMCPY(local32, data, NERD_BLOCK_SIZE);
data += NERD_BLOCK_SIZE;
len -= NERD_BLOCK_SIZE;
ByteReverseWords(local32, local32, NERD_BLOCK_SIZE);
ret = XTRANSFORM(sha256, (const uint8_t*)local32);
if (ret != 0)
break;
}
/* save remainder */
if (ret == 0 && len > 0) {
XMEMCPY(local, data, len);
sha256->buffLen = len;
}
return ret;
}
IRAM_ATTR static int nerd_finishSHA(nerd_sha256* sha256, uint8_t* hash){
int ret;
uint8_t* local;
local = (uint8_t*)sha256->buffer;
local[sha256->buffLen++] = 0x80; // add 1
//Padd with zeros
if (sha256->buffLen > NERD_PAD_SIZE) {
XMEMSET(&local[sha256->buffLen], 0, NERD_BLOCK_SIZE - sha256->buffLen);
sha256->buffLen += NERD_BLOCK_SIZE - sha256->buffLen;
ByteReverseWords(sha256->buffer, sha256->buffer, NERD_BLOCK_SIZE);
XTRANSFORM(sha256, (const uint8_t*)local);
sha256->buffLen = 0;
}
XMEMSET(&local[sha256->buffLen], 0, NERD_PAD_SIZE - sha256->buffLen);
// put lengths in bits
sha256->hiLen = (sha256->loLen >> (8 * sizeof(sha256->loLen) - 3)) + (sha256->hiLen << 3);
sha256->loLen = sha256->loLen << 3;
ByteReverseWords(sha256->buffer, sha256->buffer, NERD_BLOCK_SIZE);
// ! length ordering dependent on digest endian type !
XMEMCPY(&local[NERD_PAD_SIZE], &sha256->hiLen, sizeof(uint32_t));
XMEMCPY(&local[NERD_PAD_SIZE + sizeof(uint32_t)], &sha256->loLen, sizeof(uint32_t));
XTRANSFORM(sha256, (const uint8_t*)local);
ByteReverseWords(sha256->digest, sha256->digest, NERD_DIGEST_SIZE);
//Copy temp hash
XMEMCPY(hash, sha256->digest, NERD_DIGEST_SIZE);
return 0;
}
IRAM_ATTR int nerd_midstate(nerd_sha256* sha256, uint8_t* data, uint32_t len)
{
int ret = 0;
uint32_t blocksLen;
uint8_t* local;
//Init SHA context
XMEMSET(sha256->digest, 0, sizeof(sha256->digest));
sha256->digest[0] = 0x6A09E667L;
sha256->digest[1] = 0xBB67AE85L;
sha256->digest[2] = 0x3C6EF372L;
sha256->digest[3] = 0xA54FF53AL;
sha256->digest[4] = 0x510E527FL;
sha256->digest[5] = 0x9B05688CL;
sha256->digest[6] = 0x1F83D9ABL;
sha256->digest[7] = 0x5BE0CD19L;
sha256->buffLen = 0;
sha256->loLen = 0;
sha256->hiLen = 0;
//endINIT Sha contexxt
nerd_update(sha256,data,len);
return 0;
}
/*
IRAM_ATTR int nerd_double_sha(nerd_sha256* midstate, uint8_t* data, uint8_t* doubleHash)
{
nerd_sha256 sha256;
int ret = 0;
uint8_t hash[32];
//Copy current context
XMEMCPY(&sha256, midstate, sizeof(nerd_sha256));
// ------ First SHA ------
nerd_update(&sha256,data,16); //Pending 16 bytes from 80 of blockheader
nerd_finishSHA(&sha256,hash);
// ------ Second SHA ------
//Init SHA context
XMEMSET(sha256.digest, 0, sizeof(sha256.digest));
sha256.digest[0] = 0x6A09E667L;
sha256.digest[1] = 0xBB67AE85L;
sha256.digest[2] = 0x3C6EF372L;
sha256.digest[3] = 0xA54FF53AL;
sha256.digest[4] = 0x510E527FL;
sha256.digest[5] = 0x9B05688CL;
sha256.digest[6] = 0x1F83D9ABL;
sha256.digest[7] = 0x5BE0CD19L;
sha256.buffLen = 0;
sha256.loLen = 0;
sha256.hiLen = 0;
//endINIT Sha context
nerd_update(&sha256,hash,32);
nerd_finishSHA(&sha256,doubleHash);
return 0;
}
*/
IRAM_ATTR int nerd_double_sha(nerd_sha256* midstate, uint8_t* data, uint8_t* doubleHash)
{
IRAM_DATA_ATTR nerd_sha256 sha256;
//nerd_sha256 sha256_2;
int ret = 0;
uint32_t blocksLen;
uint8_t* local;
uint8_t* local2;
uint8_t tmpHash[32];
uint8_t* hash;
//Copy current context
XMEMCPY(&sha256, midstate, sizeof(nerd_sha256));
// ----- 1rst SHA ------------
//*********** ShaUpdate ***********
uint32_t len = 16; //Pending bytes to make the sha256
uint32_t tmp = sha256.loLen;
if ((sha256.loLen += len) < tmp) {
sha256.hiLen++;
}
local = (uint8_t*)sha256.buffer;
// save remainder
if (ret == 0 && len > 0) {
XMEMCPY(local, data, len);
sha256.buffLen = len;
}
//*********** end update ***********
//*********** Init SHA_finish ***********
local[sha256.buffLen++] = 0x80; // add 1
XMEMSET(&local[sha256.buffLen], 0, NERD_PAD_SIZE - sha256.buffLen);
// put lengths in bits
sha256.hiLen = (sha256.loLen >> (8 * sizeof(sha256.loLen) - 3)) + (sha256.hiLen << 3);
sha256.loLen = sha256.loLen << 3;
ByteReverseWords(sha256.buffer, sha256.buffer, NERD_BLOCK_SIZE);
// ! length ordering dependent on digest endian type !
XMEMCPY(&local[NERD_PAD_SIZE], &sha256.hiLen, sizeof(uint32_t));
XMEMCPY(&local[NERD_PAD_SIZE + sizeof(uint32_t)], &sha256.loLen, sizeof(uint32_t));
XTRANSFORM(&sha256, (const uint8_t*)local);
ByteReverseWords((uint32_t* )tmpHash, sha256.digest, NERD_DIGEST_SIZE);
hash = tmpHash;
//*********** end SHA_finish ***********
// ----- 2nd SHA ------------
//Init SHA context again
XMEMSET(sha256.digest, 0, sizeof(sha256.digest));
sha256.digest[0] = 0x6A09E667L;
sha256.digest[1] = 0xBB67AE85L;
sha256.digest[2] = 0x3C6EF372L;
sha256.digest[3] = 0xA54FF53AL;
sha256.digest[4] = 0x510E527FL;
sha256.digest[5] = 0x9B05688CL;
sha256.digest[6] = 0x1F83D9ABL;
sha256.digest[7] = 0x5BE0CD19L;
sha256.buffLen = 0;
sha256.loLen = 0;
sha256.hiLen = 0;
//endINIT Sha context
//*********** ShaUpdate ***********
len = 32; //Current hash size to make the 2nd sha256
tmp = sha256.loLen;
if ((sha256.loLen += len) < tmp) {
sha256.hiLen++;
}
local2 = (uint8_t*)sha256.buffer;
// process any remainder from previous operation
if (sha256.buffLen > 0) {
blocksLen = min(len, NERD_BLOCK_SIZE - sha256.buffLen);
XMEMCPY(&local2[sha256.buffLen], hash, blocksLen);
sha256.buffLen += blocksLen;
hash += blocksLen;
len -= blocksLen;
if (sha256.buffLen == NERD_BLOCK_SIZE) {
ByteReverseWords(sha256.buffer, sha256.buffer, NERD_BLOCK_SIZE);
ret = XTRANSFORM(&sha256, (const uint8_t*)local2);
if (ret == 0)
sha256.buffLen = 0;
else
len = 0; // error
}
}
// process blocks
while (len >= NERD_BLOCK_SIZE) {
uint32_t* local32 = sha256.buffer;
XMEMCPY(local32, hash, NERD_BLOCK_SIZE);
hash += NERD_BLOCK_SIZE;
len -= NERD_BLOCK_SIZE;
ByteReverseWords(local32, local32, NERD_BLOCK_SIZE);
ret = XTRANSFORM(&sha256, (const uint8_t*)local32);
if (ret != 0)
break;
}
// save remainder
if (ret == 0 && len > 0) {
XMEMCPY(local2, hash, len);
sha256.buffLen = len;
}
//*********** end update ***********
//*********** Init SHA_finish ***********
//local2 = (uint8_t*)sha256.buffer;
local2[sha256.buffLen++] = 0x80; // add 1
//local2[33] = 0x80; // add 1
//Padd with zeros
if (sha256.buffLen > NERD_PAD_SIZE) {
XMEMSET(&local2[sha256.buffLen], 0, NERD_BLOCK_SIZE - sha256.buffLen);
sha256.buffLen += NERD_BLOCK_SIZE - sha256.buffLen;
//ByteReverseWords(sha256_2.buffer, sha256_2.buffer, NERD_BLOCK_SIZE);
XTRANSFORM(&sha256, (const uint8_t*)local2);
sha256.buffLen = 0;
}
XMEMSET(&local2[sha256.buffLen], 0, NERD_PAD_SIZE - sha256.buffLen);
// put lengths in bits
sha256.hiLen = (sha256.loLen >> (8 * sizeof(sha256.loLen) - 3)) + (sha256.hiLen << 3);
sha256.loLen = sha256.loLen << 3;
ByteReverseWords(sha256.buffer, sha256.buffer, NERD_BLOCK_SIZE);
// ! length ordering dependent on digest endian type !
XMEMCPY(&local2[NERD_PAD_SIZE], &sha256.hiLen, sizeof(uint32_t));
XMEMCPY(&local2[NERD_PAD_SIZE + sizeof(uint32_t)], &sha256.loLen, sizeof(uint32_t));
XTRANSFORM(&sha256, (const uint8_t*)local2);
ByteReverseWords((uint32_t*)doubleHash, sha256.digest, NERD_DIGEST_SIZE);
return 0;
}

26
src/ShaTests/nerdSHA256.h Normal file
View File

@ -0,0 +1,26 @@
#ifndef nerdSHA256_H_
#define nerdSHA256_H_
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#define NERD_DIGEST_SIZE 32
#define NERD_BLOCK_SIZE 64
#define NERD_PAD_SIZE 56
struct nerd_sha256 {
uint32_t digest[NERD_DIGEST_SIZE / sizeof(uint32_t)];
uint32_t buffer[NERD_BLOCK_SIZE / sizeof(uint32_t)];
uint32_t buffLen; /* in bytes */
uint32_t loLen; /* length in bytes */
uint32_t hiLen; /* length in bytes */
void* heap;
};
/* Calculate midstate */
IRAM_ATTR int nerd_midstate(nerd_sha256* sha256, uint8_t* data, uint32_t len);
IRAM_ATTR int nerd_double_sha(nerd_sha256* midstate, uint8_t* data, uint8_t* doubleHash);
#endif /* nerdSHA256_H_ */

View File

@ -4,6 +4,7 @@
#include <esp_task_wdt.h>
#include <TFT_eSPI.h> // Graphics and font library for ILI9341 driver chip
#include <wolfssl/wolfcrypt/sha256.h>
//#include "ShaTests/nerdSHA256.h"
#include "media/Free_Fonts.h"
#include "media/images.h"
#include "OpenFontRender.h"
@ -240,12 +241,14 @@ void runMiner(void * task_id) {
//Prepare Premining data
Sha256 midstate[32];
unsigned char hash[32];
//nerd_sha256 nerdMidstate;
uint8_t hash[32];
Sha256 sha256;
//Calcular midstate WOLF
wc_InitSha256(midstate);
wc_Sha256Update(midstate, mMiner.bytearray_blockheader, 64);
//nerd_midstate(&nerdMidstate, mMiner.bytearray_blockheader, 64);
/*Serial.println("Blockheader:");
@ -285,6 +288,7 @@ void runMiner(void * task_id) {
// Segundo SHA-256
wc_Sha256Update(&sha256, hash, 32);
wc_Sha256Final(&sha256, hash);
//nerd_double_sha(&nerdMidstate, header64, hash);
/*for (size_t i = 0; i < 32; i++)
Serial.printf("%02x", hash[i]);

View File

@ -19,8 +19,8 @@
bool shouldSaveConfig = false;
// Variables to hold data from custom textboxes
char poolString[80] = "solo.ckpool.org";
int portNumber = 3333;
char poolString[80] = "public-pool.airdns.org";
int portNumber = 21496;//3333;
char btcString[80] = "yourBtcAddress";
int GMTzone = 2; //Currently selected in spain

View File

@ -0,0 +1,567 @@
#define NDEBUG
#include <stdio.h>
#include <string.h>
#include <Arduino.h>
//#include <wolfssl/wolfcrypt/sha256.h>
#include <esp_log.h>
#include <esp_timer.h>
#include "nerdSHA256.h"
#include <math.h>
#include <string.h>
#define HASH_SIZE 32
IRAM_ATTR static inline uint32_t rotlFixed(uint32_t x, uint32_t y)
{
return (x << y) | (x >> (sizeof(y) * 8 - y));
}
IRAM_ATTR static inline uint32_t rotrFixed(uint32_t x, uint32_t y)
{
return (x >> y) | (x << (sizeof(y) * 8 - y));
}
/* SHA256 math based on specification */
#define Ch(x,y,z) ((z) ^ ((x) & ((y) ^ (z))))
#define Maj(x,y,z) ((((x) | (y)) & (z)) | ((x) & (y)))
//#define R(x, n) (((x) & 0xFFFFFFFFU) >> (n))
#define S(x, n) rotrFixed(x, n)
#define Sigma0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define Sigma1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define Gamma0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define Gamma1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
#define a(i) S[(0-(i)) & 7]
#define b(i) S[(1-(i)) & 7]
#define c(i) S[(2-(i)) & 7]
#define d(i) S[(3-(i)) & 7]
#define e(i) S[(4-(i)) & 7]
#define f(i) S[(5-(i)) & 7]
#define g(i) S[(6-(i)) & 7]
#define h(i) S[(7-(i)) & 7]
#define XTRANSFORM(S, D) Transform_Sha256((S),(D))
#define XMEMCPY(d,s,l) memcpy((d),(s),(l))
#define XMEMSET(b,c,l) memset((b),(c),(l))
/* SHA256 version that keeps all data in registers */
#define SCHED1(j) (W[j] = *((uint32_t*)&data[j*sizeof(uint32_t)]))
#define SCHED(j) ( \
W[ j & 15] += \
Gamma1(W[(j-2) & 15])+ \
W[(j-7) & 15] + \
Gamma0(W[(j-15) & 15]) \
)
#define RND1(j) \
t0 = h(j) + Sigma1(e(j)) + Ch(e(j), f(j), g(j)) + K[i+j] + SCHED1(j); \
t1 = Sigma0(a(j)) + Maj(a(j), b(j), c(j)); \
d(j) += t0; \
h(j) = t0 + t1
#define RNDN(j) \
t0 = h(j) + Sigma1(e(j)) + Ch(e(j), f(j), g(j)) + K[i+j] + SCHED(j); \
t1 = Sigma0(a(j)) + Maj(a(j), b(j), c(j)); \
d(j) += t0; \
h(j) = t0 + t1
#define SHR(x, n) ((x & 0xFFFFFFFF) >> n)
//#define ROTR(x, n) ((x >> n) | (x << ((sizeof(x) << 3) - n)))
#define ROTR(x, n) (SHR(x, n) | ((x) << (32 - (n))))
#define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
#define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
#define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
#define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
#define F0(x, y, z) ((x & y) | (z & (x | y)))
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define R(t) (W[t] = S1(W[t - 2]) + W[t - 7] + S0(W[t - 15]) + W[t - 16])
#define P(a, b, c, d, e, f, g, h, x, K) \
{ \
temp1 = h + S3(e) + F1(e, f, g) + K + x; \
temp2 = S2(a) + F0(a, b, c); \
d += temp1; \
h = temp1 + temp2; \
}
#define GET_UINT32_BE(b, i) \
(((uint32_t)(b)[(i)] << 24) | ((uint32_t)(b)[(i) + 1] << 16) | ((uint32_t)(b)[(i) + 2] << 8) \
| ((uint32_t)(b)[(i) + 3]))
//DRAM_ATTR static const uint32_t K[] = {
DRAM_ATTR static const uint32_t K[64] = {
0x428A2F98L, 0x71374491L, 0xB5C0FBCFL, 0xE9B5DBA5L, 0x3956C25BL,
0x59F111F1L, 0x923F82A4L, 0xAB1C5ED5L, 0xD807AA98L, 0x12835B01L,
0x243185BEL, 0x550C7DC3L, 0x72BE5D74L, 0x80DEB1FEL, 0x9BDC06A7L,
0xC19BF174L, 0xE49B69C1L, 0xEFBE4786L, 0x0FC19DC6L, 0x240CA1CCL,
0x2DE92C6FL, 0x4A7484AAL, 0x5CB0A9DCL, 0x76F988DAL, 0x983E5152L,
0xA831C66DL, 0xB00327C8L, 0xBF597FC7L, 0xC6E00BF3L, 0xD5A79147L,
0x06CA6351L, 0x14292967L, 0x27B70A85L, 0x2E1B2138L, 0x4D2C6DFCL,
0x53380D13L, 0x650A7354L, 0x766A0ABBL, 0x81C2C92EL, 0x92722C85L,
0xA2BFE8A1L, 0xA81A664BL, 0xC24B8B70L, 0xC76C51A3L, 0xD192E819L,
0xD6990624L, 0xF40E3585L, 0x106AA070L, 0x19A4C116L, 0x1E376C08L,
0x2748774CL, 0x34B0BCB5L, 0x391C0CB3L, 0x4ED8AA4AL, 0x5B9CCA4FL,
0x682E6FF3L, 0x748F82EEL, 0x78A5636FL, 0x84C87814L, 0x8CC70208L,
0x90BEFFFAL, 0xA4506CEBL, 0xBEF9A3F7L, 0xC67178F2L
};
/*
IRAM_ATTR static int Transform_Sha256(nerd_sha256* sha256, const uint8_t* buf_ptr)
{
uint32_t A[8] = {0 };
uint32_t temp1, temp2, W[64];
int i=0;
for (i = 0; i < 8; i++) {
A[i] = sha256->digest[i];
}
W[0] = GET_UINT32_BE(buf_ptr, 0);
W[1] = GET_UINT32_BE(buf_ptr, 4);
W[2] = GET_UINT32_BE(buf_ptr, 8);
W[3] = GET_UINT32_BE(buf_ptr, 12);
W[4] = GET_UINT32_BE(buf_ptr, 16);
W[5] = GET_UINT32_BE(buf_ptr, 20);
W[6] = GET_UINT32_BE(buf_ptr, 24);
W[7] = GET_UINT32_BE(buf_ptr, 28);
W[8] = GET_UINT32_BE(buf_ptr, 32);
W[9] = GET_UINT32_BE(buf_ptr, 36);
W[10] = GET_UINT32_BE(buf_ptr, 40);
W[11] = GET_UINT32_BE(buf_ptr, 44);
W[12] = GET_UINT32_BE(buf_ptr, 48);
W[13] = GET_UINT32_BE(buf_ptr, 52);
W[14] = GET_UINT32_BE(buf_ptr, 56);
W[15] = GET_UINT32_BE(buf_ptr, 60);
for (i = 0; i < 16; i += 8) {
P(A[0], A[1], A[2], A[3], A[4],
A[5], A[6], A[7], W[i+0], K[i+0]);
P(A[7], A[0], A[1], A[2], A[3],
A[4], A[5], A[6], W[i+1], K[i+1]);
P(A[6], A[7], A[0], A[1], A[2],
A[3], A[4], A[5], W[i+2], K[i+2]);
P(A[5], A[6], A[7], A[0], A[1],
A[2], A[3], A[4], W[i+3], K[i+3]);
P(A[4], A[5], A[6], A[7], A[0],
A[1], A[2], A[3], W[i+4], K[i+4]);
P(A[3], A[4], A[5], A[6], A[7],
A[0], A[1], A[2], W[i+5], K[i+5]);
P(A[2], A[3], A[4], A[5], A[6],
A[7], A[0], A[1], W[i+6], K[i+6]);
P(A[1], A[2], A[3], A[4], A[5],
A[6], A[7], A[0], W[i+7], K[i+7]);
}
for (i = 16; i < 64; i += 8) {
P(A[0], A[1], A[2], A[3], A[4],
A[5], A[6], A[7], R(i+0), K[i+0]);
P(A[7], A[0], A[1], A[2], A[3],
A[4], A[5], A[6], R(i+1), K[i+1]);
P(A[6], A[7], A[0], A[1], A[2],
A[3], A[4], A[5], R(i+2), K[i+2]);
P(A[5], A[6], A[7], A[0], A[1],
A[2], A[3], A[4], R(i+3), K[i+3]);
P(A[4], A[5], A[6], A[7], A[0],
A[1], A[2], A[3], R(i+4), K[i+4]);
P(A[3], A[4], A[5], A[6], A[7],
A[0], A[1], A[2], R(i+5), K[i+5]);
P(A[2], A[3], A[4], A[5], A[6],
A[7], A[0], A[1], R(i+6), K[i+6]);
P(A[1], A[2], A[3], A[4], A[5],
A[6], A[7], A[0], R(i+7), K[i+7]);
}
for (i = 0; i < 8; i++) {
sha256->digest[i] += A[i];
}
}
*/
IRAM_ATTR static int Transform_Sha256(nerd_sha256* sha256, const uint8_t* data)
{
uint32_t S[8], t0, t1;
int i;
uint32_t W[NERD_BLOCK_SIZE/sizeof(uint32_t)];
// Copy digest to working vars
S[0] = sha256->digest[0];
S[1] = sha256->digest[1];
S[2] = sha256->digest[2];
S[3] = sha256->digest[3];
S[4] = sha256->digest[4];
S[5] = sha256->digest[5];
S[6] = sha256->digest[6];
S[7] = sha256->digest[7];
i = 0;
RND1( 0); RND1( 1); RND1( 2); RND1( 3);
RND1( 4); RND1( 5); RND1( 6); RND1( 7);
RND1( 8); RND1( 9); RND1(10); RND1(11);
RND1(12); RND1(13); RND1(14); RND1(15);
// 64 operations, partially loop unrolled
for (i = 16; i < 64; i += 16) {
RNDN( 0); RNDN( 1); RNDN( 2); RNDN( 3);
RNDN( 4); RNDN( 5); RNDN( 6); RNDN( 7);
RNDN( 8); RNDN( 9); RNDN(10); RNDN(11);
RNDN(12); RNDN(13); RNDN(14); RNDN(15);
}
// Add the working vars back into digest
sha256->digest[0] += S[0];
sha256->digest[1] += S[1];
sha256->digest[2] += S[2];
sha256->digest[3] += S[3];
sha256->digest[4] += S[4];
sha256->digest[5] += S[5];
sha256->digest[6] += S[6];
sha256->digest[7] += S[7];
return 0;
}
IRAM_ATTR static uint32_t ByteReverseWord32(uint32_t value){
value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8);
return rotlFixed(value, 16U);
}
IRAM_ATTR static void ByteReverseWords(uint32_t* out, const uint32_t* in, uint32_t byteCount)
{
uint32_t count, i;
count = byteCount/(uint32_t)sizeof(uint32_t);
for (i = 0; i < count; i++) out[i] = ByteReverseWord32(in[i]);
}
IRAM_ATTR static int nerd_update(nerd_sha256* sha256, uint8_t* data, uint32_t len)
{
int ret = 0;
uint32_t blocksLen;
uint8_t* local;
//ShaUpdate
uint32_t tmp = sha256->loLen;
if ((sha256->loLen += len) < tmp) {
sha256->hiLen++; /* carry low to high */
}
local = (uint8_t*)sha256->buffer;
/* process any remainder from previous operation */
if (sha256->buffLen > 0) {
blocksLen = min(len, NERD_BLOCK_SIZE - sha256->buffLen);
XMEMCPY(&local[sha256->buffLen], data, blocksLen);
sha256->buffLen += blocksLen;
data += blocksLen;
len -= blocksLen;
if (sha256->buffLen == NERD_BLOCK_SIZE) {
ByteReverseWords(sha256->buffer, sha256->buffer, NERD_BLOCK_SIZE);
ret = XTRANSFORM(sha256, (const uint8_t*)local);
if (ret == 0)
sha256->buffLen = 0;
else
len = 0; /* error */
}
}
/* process blocks */
while (len >= NERD_BLOCK_SIZE) {
uint32_t* local32 = sha256->buffer;
XMEMCPY(local32, data, NERD_BLOCK_SIZE);
data += NERD_BLOCK_SIZE;
len -= NERD_BLOCK_SIZE;
ByteReverseWords(local32, local32, NERD_BLOCK_SIZE);
ret = XTRANSFORM(sha256, (const uint8_t*)local32);
if (ret != 0)
break;
}
/* save remainder */
if (ret == 0 && len > 0) {
XMEMCPY(local, data, len);
sha256->buffLen = len;
}
return ret;
}
IRAM_ATTR static int nerd_finishSHA(nerd_sha256* sha256, uint8_t* hash){
int ret;
uint8_t* local;
local = (uint8_t*)sha256->buffer;
local[sha256->buffLen++] = 0x80; // add 1
//Padd with zeros
if (sha256->buffLen > NERD_PAD_SIZE) {
XMEMSET(&local[sha256->buffLen], 0, NERD_BLOCK_SIZE - sha256->buffLen);
sha256->buffLen += NERD_BLOCK_SIZE - sha256->buffLen;
ByteReverseWords(sha256->buffer, sha256->buffer, NERD_BLOCK_SIZE);
XTRANSFORM(sha256, (const uint8_t*)local);
sha256->buffLen = 0;
}
XMEMSET(&local[sha256->buffLen], 0, NERD_PAD_SIZE - sha256->buffLen);
// put lengths in bits
sha256->hiLen = (sha256->loLen >> (8 * sizeof(sha256->loLen) - 3)) + (sha256->hiLen << 3);
sha256->loLen = sha256->loLen << 3;
ByteReverseWords(sha256->buffer, sha256->buffer, NERD_BLOCK_SIZE);
// ! length ordering dependent on digest endian type !
XMEMCPY(&local[NERD_PAD_SIZE], &sha256->hiLen, sizeof(uint32_t));
XMEMCPY(&local[NERD_PAD_SIZE + sizeof(uint32_t)], &sha256->loLen, sizeof(uint32_t));
XTRANSFORM(sha256, (const uint8_t*)local);
ByteReverseWords(sha256->digest, sha256->digest, NERD_DIGEST_SIZE);
//Copy temp hash
XMEMCPY(hash, sha256->digest, NERD_DIGEST_SIZE);
return 0;
}
IRAM_ATTR int nerd_midstate(nerd_sha256* sha256, uint8_t* data, uint32_t len)
{
int ret = 0;
uint32_t blocksLen;
uint8_t* local;
//Init SHA context
XMEMSET(sha256->digest, 0, sizeof(sha256->digest));
sha256->digest[0] = 0x6A09E667L;
sha256->digest[1] = 0xBB67AE85L;
sha256->digest[2] = 0x3C6EF372L;
sha256->digest[3] = 0xA54FF53AL;
sha256->digest[4] = 0x510E527FL;
sha256->digest[5] = 0x9B05688CL;
sha256->digest[6] = 0x1F83D9ABL;
sha256->digest[7] = 0x5BE0CD19L;
sha256->buffLen = 0;
sha256->loLen = 0;
sha256->hiLen = 0;
//endINIT Sha contexxt
nerd_update(sha256,data,len);
return 0;
}
/*
IRAM_ATTR int nerd_double_sha(nerd_sha256* midstate, uint8_t* data, uint8_t* doubleHash)
{
nerd_sha256 sha256;
int ret = 0;
uint8_t hash[32];
//Copy current context
XMEMCPY(&sha256, midstate, sizeof(nerd_sha256));
// ------ First SHA ------
nerd_update(&sha256,data,16); //Pending 16 bytes from 80 of blockheader
nerd_finishSHA(&sha256,hash);
// ------ Second SHA ------
//Init SHA context
XMEMSET(sha256.digest, 0, sizeof(sha256.digest));
sha256.digest[0] = 0x6A09E667L;
sha256.digest[1] = 0xBB67AE85L;
sha256.digest[2] = 0x3C6EF372L;
sha256.digest[3] = 0xA54FF53AL;
sha256.digest[4] = 0x510E527FL;
sha256.digest[5] = 0x9B05688CL;
sha256.digest[6] = 0x1F83D9ABL;
sha256.digest[7] = 0x5BE0CD19L;
sha256.buffLen = 0;
sha256.loLen = 0;
sha256.hiLen = 0;
//endINIT Sha context
nerd_update(&sha256,hash,32);
nerd_finishSHA(&sha256,doubleHash);
return 0;
}
*/
IRAM_ATTR int nerd_double_sha(nerd_sha256* midstate, uint8_t* data, uint8_t* doubleHash)
{
IRAM_DATA_ATTR nerd_sha256 sha256;
//nerd_sha256 sha256_2;
int ret = 0;
uint32_t blocksLen;
uint8_t* local;
uint8_t* local2;
uint8_t tmpHash[32];
uint8_t* hash;
//Copy current context
XMEMCPY(&sha256, midstate, sizeof(nerd_sha256));
// ----- 1rst SHA ------------
//*********** ShaUpdate ***********
uint32_t len = 16; //Pending bytes to make the sha256
uint32_t tmp = sha256.loLen;
if ((sha256.loLen += len) < tmp) {
sha256.hiLen++;
}
local = (uint8_t*)sha256.buffer;
// save remainder
if (ret == 0 && len > 0) {
XMEMCPY(local, data, len);
sha256.buffLen = len;
}
//*********** end update ***********
//*********** Init SHA_finish ***********
local[sha256.buffLen++] = 0x80; // add 1
XMEMSET(&local[sha256.buffLen], 0, NERD_PAD_SIZE - sha256.buffLen);
// put lengths in bits
sha256.hiLen = (sha256.loLen >> (8 * sizeof(sha256.loLen) - 3)) + (sha256.hiLen << 3);
sha256.loLen = sha256.loLen << 3;
ByteReverseWords(sha256.buffer, sha256.buffer, NERD_BLOCK_SIZE);
// ! length ordering dependent on digest endian type !
XMEMCPY(&local[NERD_PAD_SIZE], &sha256.hiLen, sizeof(uint32_t));
XMEMCPY(&local[NERD_PAD_SIZE + sizeof(uint32_t)], &sha256.loLen, sizeof(uint32_t));
XTRANSFORM(&sha256, (const uint8_t*)local);
ByteReverseWords((uint32_t* )tmpHash, sha256.digest, NERD_DIGEST_SIZE);
hash = tmpHash;
//*********** end SHA_finish ***********
// ----- 2nd SHA ------------
//Init SHA context again
XMEMSET(sha256.digest, 0, sizeof(sha256.digest));
sha256.digest[0] = 0x6A09E667L;
sha256.digest[1] = 0xBB67AE85L;
sha256.digest[2] = 0x3C6EF372L;
sha256.digest[3] = 0xA54FF53AL;
sha256.digest[4] = 0x510E527FL;
sha256.digest[5] = 0x9B05688CL;
sha256.digest[6] = 0x1F83D9ABL;
sha256.digest[7] = 0x5BE0CD19L;
sha256.buffLen = 0;
sha256.loLen = 0;
sha256.hiLen = 0;
//endINIT Sha context
//*********** ShaUpdate ***********
len = 32; //Current hash size to make the 2nd sha256
tmp = sha256.loLen;
if ((sha256.loLen += len) < tmp) {
sha256.hiLen++;
}
local2 = (uint8_t*)sha256.buffer;
// process any remainder from previous operation
if (sha256.buffLen > 0) {
blocksLen = min(len, NERD_BLOCK_SIZE - sha256.buffLen);
XMEMCPY(&local2[sha256.buffLen], hash, blocksLen);
sha256.buffLen += blocksLen;
hash += blocksLen;
len -= blocksLen;
if (sha256.buffLen == NERD_BLOCK_SIZE) {
ByteReverseWords(sha256.buffer, sha256.buffer, NERD_BLOCK_SIZE);
ret = XTRANSFORM(&sha256, (const uint8_t*)local2);
if (ret == 0)
sha256.buffLen = 0;
else
len = 0; // error
}
}
// process blocks
while (len >= NERD_BLOCK_SIZE) {
uint32_t* local32 = sha256.buffer;
XMEMCPY(local32, hash, NERD_BLOCK_SIZE);
hash += NERD_BLOCK_SIZE;
len -= NERD_BLOCK_SIZE;
ByteReverseWords(local32, local32, NERD_BLOCK_SIZE);
ret = XTRANSFORM(&sha256, (const uint8_t*)local32);
if (ret != 0)
break;
}
// save remainder
if (ret == 0 && len > 0) {
XMEMCPY(local2, hash, len);
sha256.buffLen = len;
}
//*********** end update ***********
//*********** Init SHA_finish ***********
//local2 = (uint8_t*)sha256.buffer;
local2[sha256.buffLen++] = 0x80; // add 1
//local2[33] = 0x80; // add 1
//Padd with zeros
if (sha256.buffLen > NERD_PAD_SIZE) {
XMEMSET(&local2[sha256.buffLen], 0, NERD_BLOCK_SIZE - sha256.buffLen);
sha256.buffLen += NERD_BLOCK_SIZE - sha256.buffLen;
//ByteReverseWords(sha256_2.buffer, sha256_2.buffer, NERD_BLOCK_SIZE);
XTRANSFORM(&sha256, (const uint8_t*)local2);
sha256.buffLen = 0;
}
XMEMSET(&local2[sha256.buffLen], 0, NERD_PAD_SIZE - sha256.buffLen);
// put lengths in bits
sha256.hiLen = (sha256.loLen >> (8 * sizeof(sha256.loLen) - 3)) + (sha256.hiLen << 3);
sha256.loLen = sha256.loLen << 3;
ByteReverseWords(sha256.buffer, sha256.buffer, NERD_BLOCK_SIZE);
// ! length ordering dependent on digest endian type !
XMEMCPY(&local2[NERD_PAD_SIZE], &sha256.hiLen, sizeof(uint32_t));
XMEMCPY(&local2[NERD_PAD_SIZE + sizeof(uint32_t)], &sha256.loLen, sizeof(uint32_t));
XTRANSFORM(&sha256, (const uint8_t*)local2);
ByteReverseWords((uint32_t*)doubleHash, sha256.digest, NERD_DIGEST_SIZE);
return 0;
}

View File

@ -0,0 +1,26 @@
#ifndef nerdSHA256_H_
#define nerdSHA256_H_
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#define NERD_DIGEST_SIZE 32
#define NERD_BLOCK_SIZE 64
#define NERD_PAD_SIZE 56
struct nerd_sha256 {
uint32_t digest[NERD_DIGEST_SIZE / sizeof(uint32_t)];
uint32_t buffer[NERD_BLOCK_SIZE / sizeof(uint32_t)];
uint32_t buffLen; /* in bytes */
uint32_t loLen; /* length in bytes */
uint32_t hiLen; /* length in bytes */
void* heap;
};
/* Calculate midstate */
IRAM_ATTR int nerd_midstate(nerd_sha256* sha256, uint8_t* data, uint32_t len);
IRAM_ATTR int nerd_double_sha(nerd_sha256* midstate, uint8_t* data, uint8_t* doubleHash);
#endif /* nerdSHA256_H_ */

View File

@ -5,6 +5,7 @@
#include "jadeSHA256.h"
#include "customSHA256.h"
#include "nerdSHA256.h"
#include "mbedtls/md.h"
#include "mbedtls/sha256.h"
#include <wolfssl/wolfcrypt/sha256.h>
@ -69,11 +70,12 @@ void loop() {
Sha256 sha256;
uint8_t hash2[32];
wc_InitSha256(&midstate);
wc_Sha256Update(&midstate, blockheader, 64);
Serial.println("Wolf midstate:");
wc_Sha256Update(&midstate, blockheader, 64);
Serial.print("Wolf midstate: ");
for (size_t i = 0; i < 8; i++)
Serial.printf("%02x", midstate.digest[i]);
Serial.println("");
// Mining starts here
//Primer sha
startT = micros();
@ -144,5 +146,23 @@ void loop() {
for (size_t i = 0; i < 32; i++)
Serial.printf("%02x", midstate_cached.buffer[i]);
Serial.println("");
//Test nerdSHA
nerd_sha256 nerdMidstate;
uint8_t nerdHash[32];
nerd_midstate(&nerdMidstate, blockheader, 64);
Serial.print("Nerd midstate: ");
for (size_t i = 0; i < 8; i++)
Serial.printf("%02x", nerdMidstate.digest[i]);
Serial.println("");
}
//Mining starts here
startT = micros();
nerd_double_sha(&nerdMidstate, blockheader+64,nerdHash);
expired = micros() - startT;
Serial.println("Nerd double SHA[" + String(expired) + "us]:");
for (size_t i = 0; i < 32; i++)
Serial.printf("%02x", nerdHash[i]);
Serial.println("");
}