NerdNos-Firmware/lib/TFT_eSPI/Processors/TFT_eSPI_RP2040.c

734 lines
25 KiB
C
Raw Normal View History

////////////////////////////////////////////////////
// TFT_eSPI generic driver functions //
////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////////////
#if !defined (RP2040_PIO_INTERFACE) // SPI
// Select the SPI port and board package to use
#ifdef ARDUINO_ARCH_MBED
// Arduino RP2040 board package
MbedSPI spi = MbedSPI(TFT_MISO, TFT_MOSI, TFT_SCLK);
#else
// Community RP2040 board package by Earle Philhower
//SPIClass& spi = SPI; // will use board package default pins
SPIClassRP2040 spi = SPIClassRP2040(SPI_X, TFT_MISO, -1, TFT_SCLK, TFT_MOSI);
#endif
#else // PIO interface used (8 bit parallel or SPI)
#ifdef RP2040_PIO_SPI
#if defined (SPI_18BIT_DRIVER)
// SPI PIO code for 18 bit colour transmit
#include "pio_SPI_18bit.pio.h"
#else
// SPI PIO code for 16 bit colour transmit
#include "pio_SPI.pio.h"
#endif
#elif defined (TFT_PARALLEL_8_BIT)
// SPI PIO code for 8 bit parallel interface (16 bit colour)
#include "pio_8bit_parallel.pio.h"
#else // must be TFT_PARALLEL_16_BIT
// SPI PIO code for 16 bit parallel interface (16 bit colour)
#include "pio_16bit_parallel.pio.h"
#endif
// Board package specific differences
#ifdef ARDUINO_ARCH_MBED
// Not supported at the moment
#error The Arduino RP2040 MBED board package is not supported when PIO is used. Use the community package by Earle Philhower.
#endif
// Community RP2040 board package by Earle Philhower
PIO tft_pio = pio0; // Code will try both pio's to find a free SM
int8_t pio_sm = 0; // pioinit will claim a free one
// Updated later with the loading offset of the PIO program.
uint32_t program_offset = 0;
// SM stalled mask
uint32_t pull_stall_mask = 0;
// SM jump instructions to change SM behaviour
uint32_t pio_instr_jmp8 = 0;
uint32_t pio_instr_fill = 0;
uint32_t pio_instr_addr = 0;
// SM "set" instructions to control DC control signal
uint32_t pio_instr_set_dc = 0;
uint32_t pio_instr_clr_dc = 0;
#endif
#ifdef RP2040_DMA
int32_t dma_tx_channel;
dma_channel_config dma_tx_config;
#endif
////////////////////////////////////////////////////////////////////////////////////////
#if defined (TFT_SDA_READ) && !defined (RP2040_PIO_INTERFACE)
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: tft_Read_8
** Description: Bit bashed SPI to read bidirectional SDA line
***************************************************************************************/
uint8_t TFT_eSPI::tft_Read_8(void)
{
uint8_t ret = 0;
/*
for (uint8_t i = 0; i < 8; i++) { // read results
ret <<= 1;
SCLK_L;
if (digitalRead(TFT_MOSI)) ret |= 1;
SCLK_H;
}
*/
ret = spi.transfer(0x00);
return ret;
}
/***************************************************************************************
** Function name: beginSDA
** Description: Detach SPI from pin to permit software SPI
***************************************************************************************/
void TFT_eSPI::begin_SDA_Read(void)
{
// Release configured SPI port for SDA read
spi.end();
}
/***************************************************************************************
** Function name: endSDA
** Description: Attach SPI pins after software SPI
***************************************************************************************/
void TFT_eSPI::end_SDA_Read(void)
{
// Configure SPI port ready for next TFT access
spi.begin();
}
////////////////////////////////////////////////////////////////////////////////////////
#endif // #if defined (TFT_SDA_READ)
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
#if defined (RP2040_PIO_INTERFACE)
////////////////////////////////////////////////////////////////////////////////////////
#ifdef RP2040_PIO_SPI
void pioinit(uint32_t clock_freq) {
// Find a free SM on one of the PIO's
tft_pio = pio0;
/*
pio_sm = pio_claim_unused_sm(tft_pio, false); // false means don't panic
// Try pio1 if SM not found
if (pio_sm < 0) {
tft_pio = pio1;
pio_sm = pio_claim_unused_sm(tft_pio, true); // panic this time if no SM is free
}
*/
// Find enough free space on one of the PIO's
tft_pio = pio0;
if (!pio_can_add_program(tft_pio, &tft_io_program)) {
tft_pio = pio1;
if (!pio_can_add_program(tft_pio, &tft_io_program)) {
Serial.println("No room for PIO program!");
return;
}
}
pio_sm = pio_claim_unused_sm(tft_pio, false);
// Load the PIO program
program_offset = pio_add_program(tft_pio, &tft_io_program);
// Associate pins with the PIO
pio_gpio_init(tft_pio, TFT_DC);
pio_gpio_init(tft_pio, TFT_SCLK);
pio_gpio_init(tft_pio, TFT_MOSI);
// Configure the pins to be outputs
pio_sm_set_consecutive_pindirs(tft_pio, pio_sm, TFT_DC, 1, true);
pio_sm_set_consecutive_pindirs(tft_pio, pio_sm, TFT_SCLK, 1, true);
pio_sm_set_consecutive_pindirs(tft_pio, pio_sm, TFT_MOSI, 1, true);
// Configure the state machine
pio_sm_config c = tft_io_program_get_default_config(program_offset);
sm_config_set_set_pins(&c, TFT_DC, 1);
// Define the single side-set pin
sm_config_set_sideset_pins(&c, TFT_SCLK);
// Define the pin used for data output
sm_config_set_out_pins(&c, TFT_MOSI, 1);
// Set clock divider, frequency is set up to 2% faster than specified, or next division down
uint16_t clock_div = 0.98 + clock_get_hz(clk_sys) / (clock_freq * 2.0); // 2 cycles per bit
sm_config_set_clkdiv(&c, clock_div);
// Make a single 8 words FIFO from the 4 words TX and RX FIFOs
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
// The OSR register shifts to the left, sm designed to send MS byte of a colour first, autopull off
sm_config_set_out_shift(&c, false, false, 0);
// Now load the configuration
pio_sm_init(tft_pio, pio_sm, program_offset + tft_io_offset_start_tx, &c);
// Start the state machine.
pio_sm_set_enabled(tft_pio, pio_sm, true);
// Create the pull stall bit mask
pull_stall_mask = 1u << (PIO_FDEBUG_TXSTALL_LSB + pio_sm);
// Create the assembler instruction for the jump to byte send routine
pio_instr_jmp8 = pio_encode_jmp(program_offset + tft_io_offset_start_8);
pio_instr_fill = pio_encode_jmp(program_offset + tft_io_offset_block_fill);
pio_instr_addr = pio_encode_jmp(program_offset + tft_io_offset_set_addr_window);
pio_instr_set_dc = pio_encode_set((pio_src_dest)0, 1);
pio_instr_clr_dc = pio_encode_set((pio_src_dest)0, 0);
}
#else // 8 or 16 bit parallel
void pioinit(uint16_t clock_div, uint16_t fract_div) {
// Find a free SM on one of the PIO's
tft_pio = pio0;
pio_sm = pio_claim_unused_sm(tft_pio, false); // false means don't panic
// Try pio1 if SM not found
if (pio_sm < 0) {
tft_pio = pio1;
pio_sm = pio_claim_unused_sm(tft_pio, true); // panic this time if no SM is free
}
/*
// Find enough free space on one of the PIO's
tft_pio = pio0;
if (!pio_can_add_program(tft_pio, &tft_io_program) {
tft_pio = pio1;
if (!pio_can_add_program(tft_pio, &tft_io_program) {
Serial.println("No room for PIO program!");
while(1) delay(100);
return;
}
}
*/
#if defined (TFT_PARALLEL_8_BIT)
uint8_t bits = 8;
#else // must be TFT_PARALLEL_16_BIT
uint8_t bits = 16;
#endif
// Load the PIO program
program_offset = pio_add_program(tft_pio, &tft_io_program);
// Associate pins with the PIO
pio_gpio_init(tft_pio, TFT_DC);
pio_gpio_init(tft_pio, TFT_WR);
for (int i = 0; i < bits; i++) {
pio_gpio_init(tft_pio, TFT_D0 + i);
}
// Configure the pins to be outputs
pio_sm_set_consecutive_pindirs(tft_pio, pio_sm, TFT_DC, 1, true);
pio_sm_set_consecutive_pindirs(tft_pio, pio_sm, TFT_WR, 1, true);
pio_sm_set_consecutive_pindirs(tft_pio, pio_sm, TFT_D0, bits, true);
// Configure the state machine
pio_sm_config c = tft_io_program_get_default_config(program_offset);
// Define the set pin
sm_config_set_set_pins(&c, TFT_DC, 1);
// Define the single side-set pin
sm_config_set_sideset_pins(&c, TFT_WR);
// Define the consecutive pins that are used for data output
sm_config_set_out_pins(&c, TFT_D0, bits);
// Set clock divider and fractional divider
sm_config_set_clkdiv_int_frac(&c, clock_div, fract_div);
// Make a single 8 words FIFO from the 4 words TX and RX FIFOs
sm_config_set_fifo_join(&c, PIO_FIFO_JOIN_TX);
// The OSR register shifts to the left, sm designed to send MS byte of a colour first
sm_config_set_out_shift(&c, false, false, 0);
// Now load the configuration
pio_sm_init(tft_pio, pio_sm, program_offset + tft_io_offset_start_tx, &c);
// Start the state machine.
pio_sm_set_enabled(tft_pio, pio_sm, true);
// Create the pull stall bit mask
pull_stall_mask = 1u << (PIO_FDEBUG_TXSTALL_LSB + pio_sm);
// Create the instructions for the jumps to send routines
pio_instr_jmp8 = pio_encode_jmp(program_offset + tft_io_offset_start_8);
pio_instr_fill = pio_encode_jmp(program_offset + tft_io_offset_block_fill);
pio_instr_addr = pio_encode_jmp(program_offset + tft_io_offset_set_addr_window);
// Create the instructions to set and clear the DC signal
pio_instr_set_dc = pio_encode_set((pio_src_dest)0, 1);
pio_instr_clr_dc = pio_encode_set((pio_src_dest)0, 0);
}
#endif
/***************************************************************************************
** Function name: pushBlock - for generic processor and parallel display
** Description: Write a block of pixels of the same colour
***************************************************************************************/
#ifdef RP2040_PIO_PUSHBLOCK
// PIO handles pixel block fill writes
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len)
{
#if defined (SPI_18BIT_DRIVER)
uint32_t col = ((color & 0xF800)<<8) | ((color & 0x07E0)<<5) | ((color & 0x001F)<<3);
if (len) {
WAIT_FOR_STALL;
tft_pio->sm[pio_sm].instr = pio_instr_fill;
TX_FIFO = col;
TX_FIFO = --len; // Decrement first as PIO sends n+1
}
#else
if (len) {
WAIT_FOR_STALL;
tft_pio->sm[pio_sm].instr = pio_instr_fill;
TX_FIFO = color;
TX_FIFO = --len; // Decrement first as PIO sends n+1
}
#endif
}
#else
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len){
while (len > 4) {
// 5 seems to be the optimum for maximum transfer rate
WAIT_FOR_FIFO_FREE(5);
TX_FIFO = color;
TX_FIFO = color;
TX_FIFO = color;
TX_FIFO = color;
TX_FIFO = color;
len -= 5;
}
if (len) {
// There could be a maximum of 4 words left to send
WAIT_FOR_FIFO_FREE(4);
while (len--) TX_FIFO = color;
}
}
#endif
/***************************************************************************************
** Function name: pushPixels - for generic processor and parallel display
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len){
#if defined (SPI_18BIT_DRIVER)
uint16_t *data = (uint16_t*)data_in;
if (_swapBytes) {
while ( len-- ) {
uint32_t col = *data++;
tft_Write_16(col);
}
}
else {
while ( len-- ) {
uint32_t col = *data++;
tft_Write_16S(col);
}
}
#else
const uint16_t *data = (uint16_t*)data_in;
// PIO sends MS byte first, so bytes are already swapped on transmit
if(_swapBytes) {
while (len > 4) {
WAIT_FOR_FIFO_FREE(5);
TX_FIFO = data[0];
TX_FIFO = data[1];
TX_FIFO = data[2];
TX_FIFO = data[3];
TX_FIFO = data[4];
data += 5;
len -= 5;
}
if (len) {
WAIT_FOR_FIFO_FREE(4);
while(len--) TX_FIFO = *data++;
}
}
else {
while (len > 4) {
WAIT_FOR_FIFO_FREE(5);
TX_FIFO = data[0] << 8 | data[0] >> 8;
TX_FIFO = data[1] << 8 | data[1] >> 8;
TX_FIFO = data[2] << 8 | data[2] >> 8;
TX_FIFO = data[3] << 8 | data[3] >> 8;
TX_FIFO = data[4] << 8 | data[4] >> 8;
data += 5;
len -= 5;
}
if (len) {
WAIT_FOR_FIFO_FREE(4);
while(len--) {
TX_FIFO = *data << 8 | *data >> 8;
data++;
}
}
}
#endif
}
/***************************************************************************************
** Function name: GPIO direction control - supports class functions
** Description: Set parallel bus to INPUT or OUTPUT
***************************************************************************************/
void TFT_eSPI::busDir(uint32_t mask, uint8_t mode)
{
// Avoid warnings
mask = mask;
mode = mode;
/*
// mask is unused for generic processor
// Arduino native functions suited well to a generic driver
pinMode(TFT_D0, mode);
pinMode(TFT_D1, mode);
pinMode(TFT_D2, mode);
pinMode(TFT_D3, mode);
pinMode(TFT_D4, mode);
pinMode(TFT_D5, mode);
pinMode(TFT_D6, mode);
pinMode(TFT_D7, mode);
*/
}
/***************************************************************************************
** Function name: GPIO direction control - supports class functions
** Description: Faster GPIO pin input/output switch
***************************************************************************************/
void TFT_eSPI::gpioMode(uint8_t gpio, uint8_t mode)
{
// Avoid warnings
gpio = gpio;
mode = mode;
}
/***************************************************************************************
** Function name: read byte - supports class functions
** Description: Read a byte - parallel bus only - not supported yet
***************************************************************************************/
uint8_t TFT_eSPI::readByte(void)
{
uint8_t b = 0;
/*
busDir(0, INPUT);
digitalWrite(TFT_RD, LOW);
b |= digitalRead(TFT_D0) << 0;
b |= digitalRead(TFT_D1) << 1;
b |= digitalRead(TFT_D2) << 2;
b |= digitalRead(TFT_D3) << 3;
b |= digitalRead(TFT_D4) << 4;
b |= digitalRead(TFT_D5) << 5;
b |= digitalRead(TFT_D6) << 6;
b |= digitalRead(TFT_D7) << 7;
digitalWrite(TFT_RD, HIGH);
busDir(0, OUTPUT);
*/
return b;
}
////////////////////////////////////////////////////////////////////////////////////////
#elif defined (RPI_WRITE_STROBE) // For RPi TFT with write strobe
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for ESP32 or RP2040 RPi TFT
** Description: Write a block of pixels of the same colour
***************************************************************************************/
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len){
if(len) { tft_Write_16(color); len--; }
while(len--) {WR_L; WR_H;}
}
/***************************************************************************************
** Function name: pushPixels - for ESP32 or RP2040 RPi TFT
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len)
{
uint16_t *data = (uint16_t*)data_in;
if (_swapBytes) while ( len-- ) {tft_Write_16S(*data); data++;}
else while ( len-- ) {tft_Write_16(*data); data++;}
}
////////////////////////////////////////////////////////////////////////////////////////
#elif defined (SPI_18BIT_DRIVER) // SPI 18 bit colour
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for RP2040 and 3 byte RGB display
** Description: Write a block of pixels of the same colour
***************************************************************************************/
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len)
{
uint16_t r = (color & 0xF800)>>8;
uint16_t g = (color & 0x07E0)>>3;
uint16_t b = (color & 0x001F)<<3;
// If more than 32 pixels then change to 16 bit transfers with concatenated pixels
if (len > 32) {
uint32_t rg = r<<8 | g;
uint32_t br = b<<8 | r;
uint32_t gb = g<<8 | b;
// Must wait before changing to 16 bit
while (spi_get_hw(SPI_X)->sr & SPI_SSPSR_BSY_BITS) {};
hw_write_masked(&spi_get_hw(SPI_X)->cr0, (16 - 1) << SPI_SSPCR0_DSS_LSB, SPI_SSPCR0_DSS_BITS);
while ( len > 1 ) {
while (!spi_is_writable(SPI_X)){}; spi_get_hw(SPI_X)->dr = rg;
while (!spi_is_writable(SPI_X)){}; spi_get_hw(SPI_X)->dr = br;
while (!spi_is_writable(SPI_X)){}; spi_get_hw(SPI_X)->dr = gb;
len -= 2;
}
// Must wait before changing back to 8 bit
while (spi_get_hw(SPI_X)->sr & SPI_SSPSR_BSY_BITS) {};
hw_write_masked(&spi_get_hw(SPI_X)->cr0, (8 - 1) << SPI_SSPCR0_DSS_LSB, SPI_SSPCR0_DSS_BITS);
}
// Mop up the remaining pixels
while ( len-- ) {tft_Write_8N(r);tft_Write_8N(g);tft_Write_8N(b);}
}
/***************************************************************************************
** Function name: pushPixels - for RP2040 and 3 byte RGB display
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len){
uint16_t *data = (uint16_t*)data_in;
if (_swapBytes) {
while ( len-- ) {
uint32_t col = *data++;
tft_Write_16(col);
}
}
else {
while ( len-- ) {
uint32_t col = *data++;
tft_Write_16S(col);
}
}
}
////////////////////////////////////////////////////////////////////////////////////////
#else // Standard SPI 16 bit colour TFT
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for RP2040
** Description: Write a block of pixels of the same colour
***************************************************************************************/
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len){
while(len--)
{
while (!spi_is_writable(SPI_X)){};
spi_get_hw(SPI_X)->dr = (uint32_t)color;
}
}
/***************************************************************************************
** Function name: pushPixels - for RP2040
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len){
uint16_t *data = (uint16_t*)data_in;
if (_swapBytes) {
while(len--)
{
while (!spi_is_writable(SPI_X)){};
spi_get_hw(SPI_X)->dr = (uint32_t)(*data++);
}
}
else
{
while(len--)
{
uint16_t color = *data++;
color = color >> 8 | color << 8;
while (!spi_is_writable(SPI_X)){};
spi_get_hw(SPI_X)->dr = (uint32_t)color;
}
}
}
////////////////////////////////////////////////////////////////////////////////////////
#endif // End of display interface specific functions
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
#ifdef RP2040_DMA // DMA functions for 16 bit SPI and 8/16 bit parallel displays
////////////////////////////////////////////////////////////////////////////////////////
/*
These are created in header file:
uint32_t dma_tx_channel;
dma_channel_config dma_tx_config;
*/
/***************************************************************************************
** Function name: dmaBusy
** Description: Check if DMA is busy
***************************************************************************************/
bool TFT_eSPI::dmaBusy(void) {
if (!DMA_Enabled) return false;
if (dma_channel_is_busy(dma_tx_channel)) return true;
#if !defined (RP2040_PIO_INTERFACE)
// For SPI must also wait for FIFO to flush and reset format
while (spi_get_hw(SPI_X)->sr & SPI_SSPSR_BSY_BITS) {};
hw_write_masked(&spi_get_hw(SPI_X)->cr0, (16 - 1) << SPI_SSPCR0_DSS_LSB, SPI_SSPCR0_DSS_BITS);
#endif
return false;
}
/***************************************************************************************
** Function name: dmaWait
** Description: Wait until DMA is over (blocking!)
***************************************************************************************/
void TFT_eSPI::dmaWait(void)
{
while (dma_channel_is_busy(dma_tx_channel));
#if !defined (RP2040_PIO_INTERFACE)
// For SPI must also wait for FIFO to flush and reset format
while (spi_get_hw(SPI_X)->sr & SPI_SSPSR_BSY_BITS) {};
hw_write_masked(&spi_get_hw(SPI_X)->cr0, (16 - 1) << SPI_SSPCR0_DSS_LSB, SPI_SSPCR0_DSS_BITS);
#endif
}
/***************************************************************************************
** Function name: pushPixelsDMA
** Description: Push pixels to TFT
***************************************************************************************/
void TFT_eSPI::pushPixelsDMA(uint16_t* image, uint32_t len)
{
if ((len == 0) || (!DMA_Enabled)) return;
dmaWait();
channel_config_set_bswap(&dma_tx_config, !_swapBytes);
#if !defined (RP2040_PIO_INTERFACE)
dma_channel_configure(dma_tx_channel, &dma_tx_config, &spi_get_hw(SPI_X)->dr, (uint16_t*)image, len, true);
#else
dma_channel_configure(dma_tx_channel, &dma_tx_config, &tft_pio->txf[pio_sm], (uint16_t*)image, len, true);
#endif
}
/***************************************************************************************
** Function name: pushImageDMA
** Description: Push image to a window
***************************************************************************************/
// This will clip to the viewport
void TFT_eSPI::pushImageDMA(int32_t x, int32_t y, int32_t w, int32_t h, uint16_t* image, uint16_t* buffer)
{
if ((x >= _vpW) || (y >= _vpH) || (!DMA_Enabled)) return;
int32_t dx = 0;
int32_t dy = 0;
int32_t dw = w;
int32_t dh = h;
if (x < _vpX) { dx = _vpX - x; dw -= dx; x = _vpX; }
if (y < _vpY) { dy = _vpY - y; dh -= dy; y = _vpY; }
if ((x + dw) > _vpW ) dw = _vpW - x;
if ((y + dh) > _vpH ) dh = _vpH - y;
if (dw < 1 || dh < 1) return;
uint32_t len = dw*dh;
if (buffer == nullptr) {
buffer = image;
dmaWait();
}
// If image is clipped, copy pixels into a contiguous block
if ( (dw != w) || (dh != h) ) {
for (int32_t yb = 0; yb < dh; yb++) {
memmove((uint8_t*) (buffer + yb * dw), (uint8_t*) (image + dx + w * (yb + dy)), dw << 1);
}
}
// else, if a buffer pointer has been provided copy whole image to the buffer
else if (buffer != image || _swapBytes) {
memcpy(buffer, image, len*2);
}
dmaWait(); // In case we did not wait earlier
setAddrWindow(x, y, dw, dh);
channel_config_set_bswap(&dma_tx_config, !_swapBytes);
#if !defined (RP2040_PIO_INTERFACE)
dma_channel_configure(dma_tx_channel, &dma_tx_config, &spi_get_hw(SPI_X)->dr, (uint16_t*)buffer, len, true);
#else
dma_channel_configure(dma_tx_channel, &dma_tx_config, &tft_pio->txf[pio_sm], (uint16_t*)buffer, len, true);
#endif
}
/***************************************************************************************
** Function name: initDMA
** Description: Initialise the DMA engine - returns true if init OK
***************************************************************************************/
bool TFT_eSPI::initDMA(bool ctrl_cs)
{
if (DMA_Enabled) return false;
ctrl_cs = ctrl_cs; // stop unused parameter warning
dma_tx_channel = dma_claim_unused_channel(false);
if (dma_tx_channel < 0) return false;
dma_tx_config = dma_channel_get_default_config(dma_tx_channel);
channel_config_set_transfer_data_size(&dma_tx_config, DMA_SIZE_16);
#if !defined (RP2040_PIO_INTERFACE)
channel_config_set_dreq(&dma_tx_config, spi_get_index(SPI_X) ? DREQ_SPI1_TX : DREQ_SPI0_TX);
#else
channel_config_set_dreq(&dma_tx_config, pio_get_dreq(tft_pio, pio_sm, true));
#endif
DMA_Enabled = true;
return true;
}
/***************************************************************************************
** Function name: deInitDMA
** Description: Disconnect the DMA engine from SPI
***************************************************************************************/
void TFT_eSPI::deInitDMA(void)
{
if (!DMA_Enabled) return;
dma_channel_unclaim(dma_tx_channel);
DMA_Enabled = false;
}
////////////////////////////////////////////////////////////////////////////////////////
#endif // End of DMA FUNCTIONS
////////////////////////////////////////////////////////////////////////////////////////