NerdNos-Firmware/lib/TFT_eSPI/Processors/TFT_eSPI_STM32.c

676 lines
28 KiB
C
Raw Normal View History

////////////////////////////////////////////////////
// TFT_eSPI Driver functions for STM32 processors //
////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
// Global variables
////////////////////////////////////////////////////////////////////////////////////////
#if defined (TFT_PARALLEL_8_BIT)
// No globals
#else
// Use STM32 default SPI port
#if !defined (TFT_MOSI) || !defined (TFT_MISO) || !defined (TFT_SCLK)
SPIClass& spi = SPI;
#else
SPIClass spi(TFT_MOSI, TFT_MISO, TFT_SCLK);
#endif
// SPI HAL peripheral handle
SPI_HandleTypeDef spiHal;
#endif
#ifdef STM32_DMA
// DMA HAL handle
DMA_HandleTypeDef dmaHal;
#endif
// Buffer for SPI transmit byte padding and byte order manipulation
uint8_t spiBuffer[8];
////////////////////////////////////////////////////////////////////////////////////////
#if defined (TFT_SDA_READ) && !defined (TFT_PARALLEL_8_BIT)
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************############# UNTESTED ###################
** Function name: tft_Read_8
** Description: STM32 software SPI to read bidirectional SDA line
***************************************************************************************/
uint8_t TFT_eSPI::tft_Read_8(void)
{
uint8_t ret = 0;
uint32_t reg = 0;
for (uint8_t i = 0; i < 8; i++) { // read results
ret <<= 1;
SCLK_L;
if (digitalRead(TFT_MOSI)) ret |= 1;
SCLK_H;
}
return ret;
}
/***************************************************************************************############# UNTESTED ###################
** Function name: beginSDA
** Description: Detach SPI from pin to permit software SPI
***************************************************************************************/
void TFT_eSPI::begin_SDA_Read(void)
{
// Release configured SPI port for SDA read
spi.end();// Code missing here! <<<<<<<<<<<<<<Missing code<<<<<<<<<<<<<<<<<
}
/***************************************************************************************############# UNTESTED ###################
** Function name: endSDA
** Description: Attach SPI pins after software SPI
***************************************************************************************/
void TFT_eSPI::end_SDA_Read(void)
{
// Configure SPI port ready for next TFT access
spi.begin();// Code missing here! <<<<<<<<<<<<<<Missing code<<<<<<<<<<<<<<<<<
}
////////////////////////////////////////////////////////////////////////////////////////
#endif // #if defined (TFT_SDA_READ)
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
#if defined (TFT_PARALLEL_8_BIT) // Code for STM32 8 bit parallel
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for ESP32 and parallel display
** Description: Write a block of pixels of the same colour
***************************************************************************************/
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len){
// Loop unrolling improves speed dramatically graphics test 0.634s => 0.374s
while (len>31) {
#if !defined (SSD1963_DRIVER)
// 32D macro writes 16 bits twice
tft_Write_32D(color); tft_Write_32D(color);
tft_Write_32D(color); tft_Write_32D(color);
tft_Write_32D(color); tft_Write_32D(color);
tft_Write_32D(color); tft_Write_32D(color);
tft_Write_32D(color); tft_Write_32D(color);
tft_Write_32D(color); tft_Write_32D(color);
tft_Write_32D(color); tft_Write_32D(color);
tft_Write_32D(color); tft_Write_32D(color);
#else
tft_Write_16(color); tft_Write_16(color); tft_Write_16(color); tft_Write_16(color);
tft_Write_16(color); tft_Write_16(color); tft_Write_16(color); tft_Write_16(color);
tft_Write_16(color); tft_Write_16(color); tft_Write_16(color); tft_Write_16(color);
tft_Write_16(color); tft_Write_16(color); tft_Write_16(color); tft_Write_16(color);
tft_Write_16(color); tft_Write_16(color); tft_Write_16(color); tft_Write_16(color);
tft_Write_16(color); tft_Write_16(color); tft_Write_16(color); tft_Write_16(color);
tft_Write_16(color); tft_Write_16(color); tft_Write_16(color); tft_Write_16(color);
tft_Write_16(color); tft_Write_16(color); tft_Write_16(color); tft_Write_16(color);
#endif
len-=32;
}
while (len>7) {
#if !defined (SSD1963_DRIVER)
tft_Write_32D(color); tft_Write_32D(color);
tft_Write_32D(color); tft_Write_32D(color);
#else
tft_Write_16(color); tft_Write_16(color); tft_Write_16(color); tft_Write_16(color);
tft_Write_16(color); tft_Write_16(color); tft_Write_16(color); tft_Write_16(color);
#endif
len-=8;
}
while (len--) {tft_Write_16(color);}
}
/***************************************************************************************
** Function name: pushPixels - for ESP32 and parallel display
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len){
uint16_t *data = (uint16_t*)data_in;
if(_swapBytes) {
while (len>1) {tft_Write_16(*data); data++; tft_Write_16(*data); data++; len -=2;}
if (len) {tft_Write_16(*data);}
return;
}
while (len>1) {tft_Write_16S(*data); data++; tft_Write_16S(*data); data++; len -=2;}
if (len) {tft_Write_16S(*data);}
}
/***************************************************************************************
** Function name: GPIO direction control - supports class functions
** Description: Set parallel bus to INPUT or OUTPUT
***************************************************************************************/
void TFT_eSPI::busDir(uint32_t mask, uint8_t mode)
{
#if defined (STM_PORTA_DATA_BUS)
#if defined (STM32F1xx)
if (mode == OUTPUT) GPIOA->CRL = 0x33333333;
else GPIOA->CRL = 0x88888888;
#else
if (mode == OUTPUT) GPIOA->MODER = (GPIOA->MODER & 0xFFFF0000) | 0x00005555;
else GPIOA->MODER &= 0xFFFF0000;
#endif
#elif defined (STM_PORTB_DATA_BUS)
#if defined (STM32F1xx)
if (mode == OUTPUT) GPIOB->CRL = 0x33333333;
else GPIOB->CRL = 0x88888888;
#else
if (mode == OUTPUT) GPIOB->MODER = (GPIOB->MODER & 0xFFFF0000) | 0x00005555;
else GPIOB->MODER &= 0xFFFF0000;
#endif
#elif defined (STM_PORTC_DATA_BUS)
#if defined (STM32F1xx)
if (mode == OUTPUT) GPIOC->CRL = 0x33333333;
else GPIOC->CRL = 0x88888888;
#else
if (mode == OUTPUT) GPIOC->MODER = (GPIOC->MODER & 0xFFFF0000) | 0x00005555;
else GPIOC->MODER &= 0xFFFF0000;
#endif
#elif defined (STM_PORTD_DATA_BUS)
#if defined (STM32F1xx)
if (mode == OUTPUT) GPIOD->CRL = 0x33333333;
else GPIOD->CRL = 0x88888888;
#else
if (mode == OUTPUT) GPIOD->MODER = (GPIOD->MODER & 0xFFFF0000) | 0x00005555;
else GPIOD->MODER &= 0xFFFF0000;
#endif
#else
if (mode == OUTPUT) {
LL_GPIO_SetPinMode(D0_PIN_PORT, D0_PIN_MASK, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinMode(D1_PIN_PORT, D1_PIN_MASK, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinMode(D2_PIN_PORT, D2_PIN_MASK, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinMode(D3_PIN_PORT, D3_PIN_MASK, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinMode(D4_PIN_PORT, D4_PIN_MASK, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinMode(D5_PIN_PORT, D5_PIN_MASK, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinMode(D6_PIN_PORT, D6_PIN_MASK, LL_GPIO_MODE_OUTPUT);
LL_GPIO_SetPinMode(D7_PIN_PORT, D7_PIN_MASK, LL_GPIO_MODE_OUTPUT);
}
else {
LL_GPIO_SetPinMode(D0_PIN_PORT, D0_PIN_MASK, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinMode(D1_PIN_PORT, D1_PIN_MASK, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinMode(D2_PIN_PORT, D2_PIN_MASK, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinMode(D3_PIN_PORT, D3_PIN_MASK, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinMode(D4_PIN_PORT, D4_PIN_MASK, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinMode(D5_PIN_PORT, D5_PIN_MASK, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinMode(D6_PIN_PORT, D6_PIN_MASK, LL_GPIO_MODE_INPUT);
LL_GPIO_SetPinMode(D7_PIN_PORT, D7_PIN_MASK, LL_GPIO_MODE_INPUT);
}
#endif
}
/***************************************************************************************
** Function name: GPIO direction control - supports class functions
** Description: Set STM32 GPIO pin to input or output (set high) ASAP
***************************************************************************************/
void TFT_eSPI::gpioMode(uint8_t gpio, uint8_t mode)
{
PinName pn = digitalPinToPinName(gpio);
// Push-pull output with no pullup
if (mode == OUTPUT) pin_function(pn, STM_PIN_DATA(STM_MODE_OUTPUT_PP, GPIO_NOPULL, 0));
// Input with pullup
else pin_function(pn, STM_PIN_DATA(STM_MODE_INPUT, GPIO_PULLUP, 0));
}
/***************************************************************************************############# UNTESTED ###################
** Function name: read byte - supports class functions
** Description: Read a byte - parallel bus only
***************************************************************************************/
uint8_t TFT_eSPI::readByte(void)
{
uint8_t b = 0;
RD_L;
#if defined (STM_PORTA_DATA_BUS)
b = GPIOA->IDR;
b = GPIOA->IDR;
b = GPIOA->IDR;
b = (GPIOA->IDR) & 0xFF;
#elif defined (STM_PORTB_DATA_BUS)
b = GPIOB->IDR;
b = GPIOB->IDR;
b = GPIOB->IDR;
b = (GPIOB->IDR) & 0xFF;
#elif defined (STM_PORTC_DATA_BUS)
b = GPIOC->IDR;
b = GPIOC->IDR;
b = GPIOC->IDR;
b = (GPIOC->IDR) & 0xFF;
#elif defined (STM_PORTD_DATA_BUS)
b = GPIOD->IDR;
b = GPIOD->IDR;
b = GPIOD->IDR;
b = (GPIOD->IDR) & 0xFF;
#else
b = RD_TFT_D0 | RD_TFT_D0 | RD_TFT_D0 | RD_TFT_D0; //Delay for bits to settle
b = RD_TFT_D0 | RD_TFT_D1 | RD_TFT_D2 | RD_TFT_D3;
b |= RD_TFT_D4 | RD_TFT_D5 | RD_TFT_D6 | RD_TFT_D7;
#endif
RD_H;
return b;
}
////////////////////////////////////////////////////////////////////////////////////////
#elif defined (RPI_WRITE_STROBE) // For RPi TFT with write strobe ############# UNTESTED ###################
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for ESP32 or STM32 RPi TFT
** Description: Write a block of pixels of the same colour
***************************************************************************************/
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len)
{
if(len) { tft_Write_16(color); len--; }
while(len--) {WR_L; WR_H;}
}
/***************************************************************************************
** Function name: pushPixels - for ESP32 or STM32 RPi TFT
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len)
{
uint16_t *data = (uint16_t*)data_in;
if (_swapBytes) while ( len-- ) { tft_Write_16S(*data); data++;}
else while ( len-- ) {tft_Write_16(*data); data++;}
}
////////////////////////////////////////////////////////////////////////////////////////
#elif defined (SPI_18BIT_DRIVER) // SPI 18 bit colour
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for STM32 and 3 byte RGB display
** Description: Write a block of pixels of the same colour
***************************************************************************************/
#define BUF_SIZE 240*3
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len)
{
uint8_t col[BUF_SIZE];
// Always using swapped bytes is a peculiarity of this function...
//color = color>>8 | color<<8;
uint8_t r = (color & 0xF800)>>8; // Red
uint8_t g = (color & 0x07E0)>>3; // Green
uint8_t b = (color & 0x001F)<<3; // Blue
if (len<BUF_SIZE/3) {
for (uint32_t i = 0; i < len*3; i++) {
col[i] = r;
col[++i] = g;
col[++i] = b;
}
HAL_SPI_Transmit(&spiHal, col, len*3, HAL_MAX_DELAY);
return;
}
for (uint32_t i = 0; i < BUF_SIZE; i++) {
col[i] = r;
col[++i] = g;
col[++i] = b;
}
do {
HAL_SPI_Transmit(&spiHal, col, BUF_SIZE, HAL_MAX_DELAY);
len -= BUF_SIZE/3;
} while ( len>=BUF_SIZE/3 ) ;
// Send remaining pixels
if (len) HAL_SPI_Transmit(&spiHal, col, len*3, HAL_MAX_DELAY); //*/
}
/***************************************************************************************
** Function name: pushPixels - for STM32 and 3 byte RGB display
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len)
{
uint16_t *data = (uint16_t*)data_in;
if(_swapBytes) {
while ( len-- ) {
// Split out the colours
spiBuffer[0] = (*data & 0xF8); // Red
spiBuffer[1] = (*data & 0xE000)>>11 | (*data & 0x07)<<5; // Green
spiBuffer[2] = (*data & 0x1F00)>>5; // Blue
data++;
HAL_SPI_Transmit(&spiHal, spiBuffer, 3, HAL_MAX_DELAY);
}
}
else {
while ( len-- ) {
// Split out the colours
spiBuffer[0] = (*data & 0xF800)>>8; // Red
spiBuffer[1] = (*data & 0x07E0)>>3; // Green
spiBuffer[2] = (*data & 0x001F)<<3; // Blue
data++;
HAL_SPI_Transmit(&spiHal, spiBuffer, 3, HAL_MAX_DELAY);
}
}
}
////////////////////////////////////////////////////////////////////////////////////////
#else // Standard SPI 16 bit colour TFT All Tested
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: pushBlock - for STM32
** Description: Write a block of pixels of the same colour
***************************************************************************************/
#define BUF_SIZE 480
void TFT_eSPI::pushBlock(uint16_t color, uint32_t len)
{
uint16_t col[BUF_SIZE];
// Always using swapped bytes is a peculiarity of this function...
uint16_t swapColor = color>>8 | color<<8;
if (len<BUF_SIZE) {
for (uint32_t i = 0; i < len; i++) col[i] = swapColor;
HAL_SPI_Transmit(&spiHal, (uint8_t*)col, len<<1, HAL_MAX_DELAY);
return;
}
for (uint32_t i = 0; i < BUF_SIZE; i++) col[i] = swapColor;
do {
HAL_SPI_Transmit(&spiHal, (uint8_t*)col, BUF_SIZE<<1, HAL_MAX_DELAY);
len -= BUF_SIZE;
} while ( len>=BUF_SIZE ) ;
// Send remaining pixels
if (len) HAL_SPI_Transmit(&spiHal, (uint8_t*)col, len<<1, HAL_MAX_DELAY); //*/
}
/***************************************************************************************
** Function name: pushPixels - for STM32
** Description: Write a sequence of pixels
***************************************************************************************/
void TFT_eSPI::pushPixels(const void* data_in, uint32_t len)
{
uint16_t *data = (uint16_t*)data_in;
if(_swapBytes) {
uint16_t col[BUF_SIZE]; // Buffer for swapped bytes
while ( len>=BUF_SIZE ) {
for (uint32_t i = 0; i < BUF_SIZE; i++) { col[i] = (*data>>8) | (*data<<8); data++; }
HAL_SPI_Transmit(&spiHal, (uint8_t*)col, BUF_SIZE<<1, HAL_MAX_DELAY);
len -= BUF_SIZE;
}
for (uint32_t i = 0; i < len; i++) { col[i] = (*data>>8) | (*data<<8); data++; }
HAL_SPI_Transmit(&spiHal, (uint8_t*)col, len<<1, HAL_MAX_DELAY);
}
else {
// HAL byte count for transmit is only 16 bits maximum so to avoid this constraint
// transfers of small blocks are performed until HAL capacity is reached.
while(len>0x7FFF) { // Transfer 16 bit pixels in blocks if len*2 over 65534 bytes
HAL_SPI_Transmit(&spiHal, (uint8_t*)data, 0x800<<1, HAL_MAX_DELAY);
len -= 0x800; data+= 0x800; // Arbitrarily use 2KByte blocks
}
// Send remaining pixels (max 65534 bytes)
HAL_SPI_Transmit(&spiHal, (uint8_t*)data, len<<1, HAL_MAX_DELAY);
}
}
////////////////////////////////////////////////////////////////////////////////////////
#endif // End of display interface specific functions
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
#if defined STM32_DMA && !defined (TFT_PARALLEL_8_BIT) // DMA FUNCTIONS
////////////////////////////////////////////////////////////////////////////////////////
/***************************************************************************************
** Function name: dmaBusy
** Description: Check if DMA is busy (usefully non-blocking!)
***************************************************************************************/
// Use while( tft.dmaBusy() ) {Do-something-useful;}"
bool TFT_eSPI::dmaBusy(void)
{
//return (dmaHal.State == HAL_DMA_STATE_BUSY); // Do not use, SPI may still be busy
return (spiHal.State == HAL_SPI_STATE_BUSY_TX); // Check if SPI Tx is busy
}
/***************************************************************************************
** Function name: dmaWait
** Description: Wait until DMA is over (blocking!)
***************************************************************************************/
void TFT_eSPI::dmaWait(void)
{
//return (dmaHal.State == HAL_DMA_STATE_BUSY); // Do not use, SPI may still be busy
while (spiHal.State == HAL_SPI_STATE_BUSY_TX); // Check if SPI Tx is busy
}
/***************************************************************************************
** Function name: pushPixelsDMA
** Description: Push pixels to TFT (len must be less than 32767)
***************************************************************************************/
// This will byte swap the original image if setSwapBytes(true) was called by sketch.
void TFT_eSPI::pushPixelsDMA(uint16_t* image, uint32_t len)
{
if (len == 0) return;
// Wait for any current DMA transaction to end
while (spiHal.State == HAL_SPI_STATE_BUSY_TX); // Check if SPI Tx is busy
if(_swapBytes) {
for (uint32_t i = 0; i < len; i++) (image[i] = image[i] << 8 | image[i] >> 8);
}
HAL_SPI_Transmit_DMA(&spiHal, (uint8_t*)image, len << 1);
}
/***************************************************************************************
** Function name: pushImageDMA
** Description: Push image to a window (w*h must be less than 65536)
***************************************************************************************/
// This will clip and also swap bytes if setSwapBytes(true) was called by sketch
void TFT_eSPI::pushImageDMA(int32_t x, int32_t y, int32_t w, int32_t h, uint16_t* image, uint16_t* buffer)
{
if ((x >= _vpW) || (y >= _vpH)) return;
int32_t dx = 0;
int32_t dy = 0;
int32_t dw = w;
int32_t dh = h;
if (x < _vpX) { dx = _vpX - x; dw -= dx; x = _vpX; }
if (y < _vpY) { dy = _vpY - y; dh -= dy; y = _vpY; }
if ((x + dw) > _vpW ) dw = _vpW - x;
if ((y + dh) > _vpH ) dh = _vpH - y;
if (dw < 1 || dh < 1) return;
uint32_t len = dw*dh;
if (buffer == nullptr) {
buffer = image;
while (spiHal.State == HAL_SPI_STATE_BUSY_TX); // Check if SPI Tx is busy
}
// If image is clipped, copy pixels into a contiguous block
if ( (dw != w) || (dh != h) ) {
if(_swapBytes) {
for (int32_t yb = 0; yb < dh; yb++) {
for (int32_t xb = 0; xb < dw; xb++) {
uint32_t src = xb + dx + w * (yb + dy);
(buffer[xb + yb * dw] = image[src] << 8 | image[src] >> 8);
}
}
}
else {
for (int32_t yb = 0; yb < dh; yb++) {
memcpy((uint8_t*) (buffer + yb * dw), (uint8_t*) (image + dx + w * (yb + dy)), dw << 1);
}
}
}
// else, if a buffer pointer has been provided copy whole image to the buffer
else if (buffer != image || _swapBytes) {
if(_swapBytes) {
for (uint32_t i = 0; i < len; i++) (buffer[i] = image[i] << 8 | image[i] >> 8);
}
else {
memcpy(buffer, image, len*2);
}
}
setWindow(x, y, x + dw - 1, y + dh - 1);
// DMA byte count for transmit is only 16 bits maximum, so to avoid this constraint
// small transfers are performed using a blocking call until DMA capacity is reached.
// User sketch can prevent blocking by managing pixel count and splitting into blocks
// of 32767 pixels maximum. (equivalent to an area of ~320 x 100 pixels)
while(len>0x7FFF) { // Transfer 16 bit pixels in blocks if len*2 over 65534 bytes
HAL_SPI_Transmit(&spiHal, (uint8_t*)buffer, 0x800<<1, HAL_MAX_DELAY);
len -= 0x800; buffer+= 0x800; // Arbitrarily send 1K pixel blocks (2Kbytes)
}
// Send remaining pixels using DMA (max 65534 bytes)
HAL_SPI_Transmit_DMA(&spiHal, (uint8_t*)buffer, len << 1);
}
////////////////////////////////////////////////////////////////////////////////////////
// Processor specific DMA initialisation
////////////////////////////////////////////////////////////////////////////////////////
// The DMA functions here work with SPI only (not parallel)
#if defined (STM32F2xx) || defined (STM32F4xx) || defined (STM32F7xx)
/***************************************************************************************
** Function name: DMAX_StreamX_IRQHandler
** Description: Override the default HAL stream X interrupt handler
***************************************************************************************/
#if (TFT_SPI_PORT == 1)
extern "C" void DMA2_Stream3_IRQHandler();
void DMA2_Stream3_IRQHandler(void)
#elif (TFT_SPI_PORT == 2)
extern "C" void DMA1_Stream4_IRQHandler();
void DMA1_Stream4_IRQHandler(void)
#elif (TFT_SPI_PORT == 3)
extern "C" void DMA1_Stream5_IRQHandler();
void DMA1_Stream5_IRQHandler(void)
#endif
{
// Call the default end of buffer handler
HAL_DMA_IRQHandler(&dmaHal);
}
/***************************************************************************************
** Function name: initDMA
** Description: Initialise the DMA engine - returns true if init OK
***************************************************************************************/
// This initialisation is for STM32F2xx/4xx/7xx processors and may not work on others
// Dual core H7xx series not supported yet, they are different and have a DMA MUX:
// https://electronics.stackexchange.com/questions/379813/configuring-the-dma-request-multiplexer-on-a-stm32h7-mcu
bool TFT_eSPI::initDMA(bool ctrl_cs)
{
ctrl_cs = ctrl_cs; // Not used for STM32, so stop compiler warning
#if (TFT_SPI_PORT == 1)
__HAL_RCC_DMA2_CLK_ENABLE(); // Enable DMA2 clock
dmaHal.Init.Channel = DMA_CHANNEL_3; // DMA channel 3 is for SPI1 TX
#elif (TFT_SPI_PORT == 2)
__HAL_RCC_DMA1_CLK_ENABLE(); // Enable DMA1 clock
dmaHal.Init.Channel = DMA_CHANNEL_0; // DMA channel 0 is for SPI2 TX
#elif (TFT_SPI_PORT == 3)
__HAL_RCC_DMA1_CLK_ENABLE(); // Enable DMA1 clock
dmaHal.Init.Channel = DMA_CHANNEL_0; // DMA channel 0 is for SPI3 TX
#endif
dmaHal.Init.Mode = DMA_NORMAL; //DMA_CIRCULAR; // // Normal = send buffer once
dmaHal.Init.Direction = DMA_MEMORY_TO_PERIPH; // Copy memory to the peripheral
dmaHal.Init.PeriphInc = DMA_PINC_DISABLE; // Don't increment peripheral address
dmaHal.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; // Peripheral is byte aligned
dmaHal.Init.MemInc = DMA_MINC_ENABLE; // Increment memory address
dmaHal.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; // Memory is byte aligned
if (HAL_DMA_Init(&dmaHal) != HAL_OK){ // Init DMA with settings
// Insert error message here?
return DMA_Enabled = false;
};
#if (TFT_SPI_PORT == 1)
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn); // Enable DMA end interrupt handler
#elif (TFT_SPI_PORT == 2)
HAL_NVIC_EnableIRQ(DMA1_Stream4_IRQn); // Enable DMA end interrupt handler
#endif
__HAL_LINKDMA(&spiHal, hdmatx, dmaHal); // Attach DMA engine to SPI peripheral
return DMA_Enabled = true;
}
#elif defined (STM32F1xx) // Supports "Blue Pill" boards
/***************************************************************************************
** Function name: DMA1_ChannelX_IRQHandler
** Description: Override the default HAL stream 3 interrupt handler
***************************************************************************************/
#if (TFT_SPI_PORT == 1)
extern "C" void DMA1_Channel3_IRQHandler();
void DMA1_Channel3_IRQHandler(void)
#elif (TFT_SPI_PORT == 2)
extern "C" void DMA1_Channel5_IRQHandler();
void DMA1_Channel5_IRQHandler(void)
#endif
{
// Call the default end of buffer handler
HAL_DMA_IRQHandler(&dmaHal);
}
//*/
/***************************************************************************************
** Function name: initDMA
** Description: Initialise the DMA engine - returns true if init OK
***************************************************************************************/
bool TFT_eSPI::initDMA(bool ctrl_cs)
{
ctrl_cs = ctrl_cs; // Not used for STM32, so stop compiler warning
__HAL_RCC_DMA1_CLK_ENABLE(); // Enable DMA1 clock
dmaHal.Init.Mode = DMA_NORMAL; //DMA_CIRCULAR; // // Normal = send buffer once
dmaHal.Init.Direction = DMA_MEMORY_TO_PERIPH; // Copy memory to the peripheral
dmaHal.Init.PeriphInc = DMA_PINC_DISABLE; // Don't increment peripheral address
dmaHal.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; // Peripheral is byte aligned
dmaHal.Init.MemInc = DMA_MINC_ENABLE; // Increment memory address
dmaHal.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; // Memory is byte aligned
dmaHal.Init.Priority = DMA_PRIORITY_LOW; // Added this line - needed ?
__HAL_LINKDMA(&spiHal, hdmatx, dmaHal); // Attach DMA engine to SPI peripheral
if (HAL_DMA_Init(&dmaHal) != HAL_OK){ // Init DMA with settings
// Insert error message here?
return DMA_Enabled = false;
};
#if (TFT_SPI_PORT == 1)
HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn); // Enable DMA end interrupt handler
#elif (TFT_SPI_PORT == 2)
HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 1, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn); // Enable DMA end interrupt handler
#endif
return DMA_Enabled = true;
}
#endif // End of STM32F1/2/4/7xx
/***************************************************************************************
** Function name: deInitDMA
** Description: Disconnect the DMA engine from SPI
***************************************************************************************/
void TFT_eSPI::deInitDMA(void)
{
HAL_DMA_DeInit(&dmaHal);
DMA_Enabled = false;
}
////////////////////////////////////////////////////////////////////////////////////////
#endif // End of DMA FUNCTIONS
////////////////////////////////////////////////////////////////////////////////////////